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Abstract

Rapid advance in the development of powerful observational instru-

ments has led to the establishment of precision cosmology. The prin-

cipal aim of this dissertation is to analyse both existing and forth-

coming astronomical observations, through advanced statistical tech-

niques, to search for possible deviations from the concordance ΛCDM

model. Particular emphasis is placed on epochs where the universe

undergoes an acceleration period: the inflationary epoch generated

by a scalar-field at the earliest stages of the universe, and the late-

time accelerated expansion attributed to a yet-unknown component

termed dark energy. The general properties of each epoch are com-

monly summarised, respectively, via the primordial power spectrum

P(k) and the dark energy equation-of-state w(z). Departures from

standard values are sought by, first, the implementation of an opti-

mal node-based reconstruction to determine the global structure of

P(k) and w(z). Then, alternative models and more general theories

are also explored, for instance the Lasenby & Doran model used to

construct inflationary models in closed universes. Models to provide

a possible explanation of the late-time acceleration of the universe

are also considered, either by the inclusion of a second dark energy

component in standard ΛCDM, or by modifying the laws of gravity

on cosmological scales. The search for new cosmological features is

carried out through current observational data coming from studies

of the Cosmic Microwave Background radiation (CMB), Large-Scale

Structure (LSS) and supernovae Type Ia. In addition to present ob-

servations, simulations of future CMB surveys are also incorporated

into the analysis. In this work we have found models that exhibit mild

deviations from the minimal form of the standard cosmological model.

These models are in good agreement with current data and, in spite of

their complexity and extra parameters, they share a similar Bayesian

evidence compared to the ΛCDM model.
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Notation

Some of the notation adopted throughout this dissertation is as follows:

• We use the natural unit system, wherein the speed of light c, Planck’s

constant ~ and Boltzmann’s constant kB, are set to unity

c = ~ = kB = 1. (1)

• Greek indices run over time coordinate (labelled by ‘0’) and three spatial-

Latin coordinates:

α, β, · · · ∈ {0, 1, 2, 3}, and i, j, · · · ∈ {1, 2, 3}. (2)

• A dot over any quantity denotes time derivative of that quantity, prime

represents conformal-time derivatives and subscript comma derivatives with

respect to space coordinates or fields:

ḟ ≡ ∂f

∂t
, , f ′ ≡ ∂f

∂η
, and f,φ ≡ ∂f

∂φ
. (3)

• We adopt the sign convention commonly used in relativity and cosmology:

ηµν = diag(−1, 1, 1, 1). (4)

• Quantities evaluated at present time (t = t0) are also expressed by a sub-

script ‘0’.

• Spatial vectors are represented by any of these forms: x, xi, ~x.
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Chapter 1
Outline

The outline of the thesis is as follows. In Chapter 2 we start by introducing the

theoretical framework that underlies the standard model of modern cosmology:

the concordance ΛCDM. Here we present the basic concepts that will be used in

later chapters. We then provide a brief description of the homogeneous and per-

turbed universe, and for completeness, a short overview of the inflationary model

is also given. The main goal of this chapter is the computation of the distance

modulus, cosmic microwave background spectrum and matter power spectrum

which allows us to establish a connection between theoretical models and cos-

mological observations, through statistical tools described in the next chapter.

Chapter 3 is focussed on the analysis of cosmological observations for a given

theoretical model. We provide a short introduction to the principal quantities that

describe the properties of the universe. Then, we highlight present and future ex-

perimental results used throughout this work, e.g. cosmic microwave background,

supernovae Type Ia and large-scale-structure observations. Finally, with the use

of Bayesian analysis, we illustrate the parameter estimation and model selection

in the context of the standard ΛCDM model, for a spatially flat and non-flat uni-

verse. The current constraints on the standard parameters, as well as the Bayesian

evidence, are compared for each model. As part of the analysis, dataset consis-

tency is also investigated.

1



1. OUTLINE

Chapter 4 is devoted to determining the preferred shape of the primordial

spectrum of curvature perturbations. We first reconstruct the spectrum modelled

as piecewise linear in log k between nodes in k-space whose amplitudes and posi-

tions are allowed to vary. The number of nodes together with their positions are

chosen by the Bayesian evidence, so that we can both determine the complexity

supported by the data and locate any features present in the spectrum. In addition

to the node-based reconstruction, we consider a set of models for the primordial

spectrum: the standard power-law parameterisation, the spectrum produced from

the Lasenby & Doran (LD) model and a simple variant parameterisation. In par-

ticular we explore in a more detail the LD model, which is based on the restriction

of the total conformal time available in a closed Universe. An important feature

of the LD spectrum is that it naturally incorporates an exponential fall-off at

large scales without the need to parameterise it, while, at small scales it auto-

matically incorporates a degree of negative running compared with the standard

power-law parameterisation. In addition to parameter estimation, we select the

preferred model by comparing the different classes of models through its Bayesian

evidence. We find the power-law parameterisation is significantly disfavoured by

current cosmological observations, which show a preference for the LD model.

In Chapter 4 we show that recent cosmological observations hint at a devi-

ation from the simple power-law form of the primordial spectrum of curvature

perturbations. In Chapter 5 we find that in the presence of a tensor compo-

nent, the turn-over in the initial spectrum is enhanced and hence non-power-

law models ought to be considered. For instance, for a power-law parameterisa-

tion with both a tensor component and running parameter, current data show

a preference for a negative running at more than 2.5σ C.L. As a consequence of

this deviation from a power-law, constraints on the tensor-to-scalar ratio r are

slightly broader. Here, we also present constraints on the inflationary parame-

ters for a model-independent reconstruction and the Lasenby & Doran model. In

particular, the constraints on the tensor-to-scalar ratio from the LD model are:

rLD = 0.11 ± 0.024. In addition to current data, we show expected constraints

from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-

Monte-Carlo sampling chains. The Bayes factor, using current observations, shows
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a strong preference for the LD model over the standard power-law parameterisa-

tion, and provides an insight into the accuracy of differentiating models through

future surveys.

One of the main challenges of modern cosmology is to investigate the nature

of the dark energy, introduced to explain the present accelerated-expansion of

the universe. The properties of such a component are normally summarised as

a perfect fluid with a (potentially) time-dependent equation-of-state parameter

w(z). In Chapter 6 we investigate the evolution of this parameter with red-

shift by performing an optimal model-independent reconstruction. The process

is essentially identical to the approach used to recover the preferred shape of

the primordial spectrum. We compare this reconstruction with some previously

well-studied parameterisations: the Chevallier-Polarski-Linder (CPL), the Jassal-

Bagla-Padmanabhan (JBP) and the Felice-Nesseris-Tsujikawa (FNT). We find an

indication towards possible time-dependence in the dark energy equation-of-state.

It is also worth noting that the CPL and JBP models are strongly disfavoured,

whilst the FNT is just significantly disfavoured, when compared to a simple cos-

mological constant.

In Chapter 7, we explore the possibility that, in fact, there exist two dark-

energy components: the cosmological constant Λ, with equation-of-state param-

eter wΛ = −1, and a ‘missing matter’ component X with wX = −2/3, which

we introduce here to allow the Friedmann equation written in terms of conformal

time η to be form-invariant under the reciprocity transformation a(η)→ 1/a(η) of

the scale factor. Using recent cosmological observations, we constrain the present-

day energy density of missing matter to be ΩX,0 = −0.11±0.14. This is consistent

with the standard ΛCDM model, but constraints on the energy densities of all the

components are considerably broadened by the introduction of missing matter;

significant relative probability exists even for ΩX,0 ∼ 0.2, and so the presence of a

missing matter component cannot be ruled out. We extend our analysis by allow-

ing wX to be a free parameter. For this more generic ‘double dark energy’ model,

we find wX = −1.02±0.20 and ΩX,0 = 0.08±0.57, which is again consistent with

the standard ΛCDM model, although once more the posterior distributions are
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sufficiently broad that the existence of a second dark-energy component cannot

be ruled out. Moreover, the two-dimensional posterior in the (wX ,ΩX,0)-plane is

strongly bimodal with both peaks offset from the standard ΛCDM model cor-

responding to (−1, 0), although the latter is still admissible; this bimodality is

in contrast to the correctly-centred unimodal posterior typically obtained when

analysing realisations of simulated observations from a ΛCDM model. The model

including the second dark energy component also has a similar Bayesian evidence

to ΛCDM to within the numerical uncertainty.

Modifications to general relativity have been suggested as viable alternatives

to dark energy. In Chapter 8 we investigate the evolution both of the back-

ground universe and density perturbations for a modified gravity theory. While

the cosmic expansion can be recast using an effective equation-of-state weff(a),

the evolution of linear perturbations is studied by the introduction of two para-

metric functions: the ratio of the two metric potentials and the ratio of an effec-

tive gravitational constant to the Newtonian constant in the Poisson equation.

With the use of current observational data we impose constraints on the pa-

rameters λ, α and n used to parameterise a variant of the Starobinsky model

f(R) = R − λRc

[
1−

(
1 + α R

Rc

)−n]
. In particular, we find that for n = 2, cur-

rent cosmological observations limit the present value of the field-amplitude to

be |F0−1| < 0.002, and its effective equation-of-state |weff,0 + 1| < 0.002, both at

95% C.L. We also find that our f(R) model with n = 2 is significantly preferred

over the standard ΛCDM model.

-4-



Chapter 2
Theoretical Framework

In this Chapter, we start by introducing the theoretical framework that under-

lies the standard model of modern cosmology: the concordance ΛCDM model.

We briefly review the equations determining the evolution of a homogeneous and

isotropic universe and present, to first-order, the formalism of cosmological per-

turbation theory. For the sake of completeness, we have included the inflationary

model as a solution to some of the shortcomings of the Hot Big Bang model.

Finally, the computation of the distance modulus, cosmic microwave background

spectrum and matter power spectrum allows us to establish a connection between

cosmological models and current (future) observations, through statistical tools

described in the next chapter. Some reference books have been used through-

out this short review: Dodelson [60], Hobson et al. [92], Liddle and Lyth [139],

Mukhanov [167]; as well as some course notes: Peiris [177], Pettini [182], Challinor

[39].

2.1 The Homogeneous Universe

The standard description of the dynamical properties of the universe is provided

by the Einstein’s theory of General Relativity (GR), which builds a connection

between the curvature of the space-time and its matter-content, through funda-

mental quantities: the metric gµν and the energy-momentum tensor Tµν . In order

to specify the geometry of the universe, an essential assumption is the Cosmo-
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logical Principle: when averaged over sufficiently large-scales, the universe looks

essentially Homogeneous and Isotropic. For instance, at scales larger than 100

Mpc, the distribution of galaxies over the celestial sphere does seem to justify

the assumption of isotropy [46]. Moreover, the current uniformity in the temper-

ature distribution of the Cosmic Microwave Background (CMB) radiation, to a

few parts in 105 [120], is the best observational evidence we have in support of

an isotropic universe. If isotropy is thus taken for granted and considering the

Copernican Principle (our position in the universe is by no means preferred to

any other), then homogeneity follows from isotropy at every point.

Under these conditions, the most general expression for the metric gµν that

incorporates the property of a spatially homogeneous and isotropic universe, can

be written in the Friedmann-Robertson-Walker (FRW) form:

ds2 ≡ gµνdx
µdxν = −dt2 +R2(t)γijdx

idxj. (2.1)

The evolution of the universe, represented by the scale factor R(t), depends only

on the cosmic time t because of the homogeneity assumption. Isotropy is implied

by requiring that time-time g00 and space-space gii are the only non-zero com-

ponents, otherwise a particular direction in space could be preferred. Over the

years, cosmological observations have provided decisive evidence that the universe

is currently expanding, hence the scale factor satisfies Ṙ(t) > 0, see Hubble [102],

Perlmutter et al. [180], Riess et al. [193]. The spatial part of the metric is written

as

γijdx
idxj =

dr̃2

1− kr̃2
+ r̃2dΩ2, (2.2)

where r̃ is the radial coordinate and dΩ2 = dθ2 + sin2 θdφ2 is the metric on the 2-

sphere. The constant k classifies the curvature of the spatial sections, with closed,

flat and open universes corresponding to k = +1, 0,−1, respectively.

A convenient form in which to express the FRW metric is by using coordinates

normalised to present time, labelled with subscript ‘0’, i.e.

a(t) ≡ R(t)

R0

, r ≡ R0r̃, (2.3)
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2.1 The Homogeneous Universe

and the curvature parameter κ = k/R2
0, of dimensions [length]−2. Note that κ

can take any value and not just be restricted to {+1, 0,−1}. The general FRW

metric written in terms of the normalised scale factor a(t) is thus given by

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
. (2.4)

The physical meaning of the curvature term becomes more apparent by redefining

the radial coordinate in the metric (2.4), to give

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (2.5)

where the function Sk(χ) is specified by the curvature term:

Sk(χ) =


sinχ, for κ > 0 (closed universe)
χ, for κ = 0 (flat universe)
sinhχ, for κ < 0 (open universe)

(2.6)

and the comoving radial χ-coordinate, on a null geodesic, is computed from

χ =
1

R0

∫
dt

a(t)
. (2.7)

Therefore the dynamics of the space-time, in a homogeneous and isotropic uni-

verse, reduces to determining the normalised scale factor a(t), which is computed

from Einstein’s equations once the matter content is specified, as we shall see

below.

2.1.1 The Einstein equations

Once we have specified the metric to describe the homogeneous and isotropic

expanding universe, the evolution of both the scale factor and matter density

follow from Einstein’s equations:

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν . (2.8)

Here Gµν is the Einstein metric tensor, the Ricci tensor Rµν is a combination of

first and second derivatives of gµν , and its trace is defined as the Ricci scalar R ≡
gµνRµν ; G is Newton’s constant. On the right hand side, the energy-momentum
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tensor Tµν contains the constituents of the universe. An acceptable modification

to Einstein’s equations is the introduction of a Lorentz-invariant constant-term

Λgµν into the field equations:

Rµν − 1

2
gµνR + Λgµν = 8πGTµν , (2.9)

where Λ is called the cosmological constant and its value, according to astro-

physical observations, is Λ ∼ 10−52m−2 [36, 174]; we will see more about this

component in subsequent sections. Equation (2.9) is in general a complicated

set of coupled non-linear second-order partial differential equations for the ten

elements of the metric gµν . Nevertheless, they may exhibit simple analytical so-

lutions in the presence of generic symmetries, for instance, under the assumption

of the FRW metric. Considering gµν in the form of (2.4), the only non-vanishing

curvature terms are given by

R0
0 = −3ä

a
, (2.10)

Ri
j =

(
ä

a
+

2ȧ2

a2
+

2κ

a2

)
δij, (2.11)

R = 6

(
ä

a
+
ȧ2

a2
+
κ

a2

)
, (2.12)

where an overdote indicates derivative with respect to cosmic time t (� ≡ d/dt).

The geometry of the space-time is determined by equations (2.10)-(2.12), then

to solve Einstein’s equations we just need to specify the matter content under

consideration. Let us start by assuming an ideal perfect-fluid as the main source

of the energy-momentum tensor

T µν = (p+ ρ)uµuν − pgµν , (2.13)

where ρ is the energy density and p the isotropic pressure of the fluid, both of

them measured by an observer in a local inertial frame in which the fluid is at rest.

In the rest frame, where the 4-velocity of the fluid is uµ = (1, 0, 0, 0), the energy-

momentum tensor reduces to T µν = diag(−ρ, giip). Thus, Einstein’s equations

for a perfect fluid in a FRW background provide two independent expressions
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(time-time and space-space components), which together yield the Friedmann

and acceleration equations:(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
+

1

3
Λ, (2.14)

ä

a
= −4πG

3
(ρ+ 3p) +

1

3
Λ. (2.15)

The cosmological equations, in which a(t) is computed under the aforementioned

conditions, are known as Friedmann-Lemâitre-Robertson-Walker equations; we

simply refer to them as Friedmann equations.

Another equation of interest is the conservation of the energy-momentum

tensor, T µν;µ = 0, which leads to the continuity equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.16)

In order to solve the full set of cosmological equations, we still need to specify

an extra condition, for instance the pressure for every kind of material the uni-

verse is filled with. The usual, and well-founded, assumption is that there is a

pressure contribution associated to each energy density, so that p ≡ p(ρ). Such a

relationship is known as the equation-of-state. The Friedmann equations (2.14),

the energy-momentum conservation (2.16), and the equation-of-state p = p(ρ)

are therefore the fundamental expressions that describe the dynamics of a homo-

geneous and isotropic universe.

2.1.2 Cosmic Inventory

In order to understand the dynamical properties of the universe, we first need to

bear in mind the whole content of it. Let us focus on single-barotropic perfect-

fluids that satisfy, in general, a time-dependent equation-of-state w(a), of the

form

p = w(a)ρ. (2.17)
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For any component, with constant w, the continuity equation (2.16) can be easily

integrated to give 1

ρ ∝ a−3(1+w). (2.19)

Moreover, in a universe dominated by the energy density ρ, the Friedmann equa-

tion leads to the time evolution of the scale factor:

a ∝ t2/3(1+w), ∀ w 6= −1. (2.20)

That is, the evolution of a universe filled with a given perfect fluid is known

once its equation-of-state is specified. The standard Λ-Cold Dark Matter model

(ΛCDM) relies upon four main ingredients, described by radiation (photons,

massless neutrinos), matter (baryons), the inclusion of a dark matter compo-

nent (DM) and vacuum energy (Λ). The behaviour of each of these components

is summarised as follows:

Radiation

This relativistic component dominates during the earliest stages of the universe.

Radiation is characterised by an associated pressure pr = ρr/3, with equation-

of-state wr = 1/3. The evolution of its energy-density and scale factor are thus

given by

ρr(t) ∝ a−4, and a(t) ∝ t1/2. (2.21)

The total radiation energy-density ρr in the universe may be written as the sum

of two main contributions: photons (γ) and massless neutrinos (ν):

ρr(t) = ργ(t) + ρν(t). (2.22)

Photons - Primordial photons play a key role in observational cosmology as

they constitute the cosmic microwave background radiation we nowadays ob-

served, as we shall see in more detail in Sections 2.4.2 and 3.2.1.

1For a more general description of w(a), the evolution of the energy density is given by

ρ ∝ exp[−3X(a)], with X(a) =
∫ a

1

[1 + w(a′)]d ln a′. (2.18)
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2.1 The Homogeneous Universe

Neutrinos - Neutrinos are very weakly interacting leptons, which come in

three types or ‘flavours’: electron, muon, and tau; all of them with an associated

antiparticle. Under the assumption that neutrinos are massless, their contribution

to the energy density would be

ρν = Neff × 7

8
×
(

4

11

)4/3

ργ, mν = 0, (2.23)

where Neff is the effective number of neutrino species; note that Neff = 3.046 for

the standard neutrino species [153]. Nevertheless, various experiments suggest

they do have a very small mass (experiments detecting atmospheric neutrinos,

solar neutrinos) and therefore a density parameter (2.34) corresponding to

Ων =
mν

94h2eV
, mν 6= 0. (2.24)

Cosmological observations have also provided limits on the neutrino mass, some

reviews in the subject can be found in: Dolgov [61], Elgarøy and Lahav [69], Hannestad

[87], Lesgourgues and Pastor [132].

Matter

Any type of material with negligible pressure is often referred as ‘dust’. It is

represented by an equation-of-state wm = 0, with energy-density given by

ρm(t) ∝ a−3, and a(t) ∝ t2/3. (2.25)

The total matter content of the universe comes in several different forms. In

addition to the familiar baryonic matter, observations of the Large-Scale Structure

(LSS) suggest that most of the galactic content is in the form of non-baryonic

matter, called dark matter. The total matter density may be expressed as the

sum of baryonic (b) and dark matter (dm) contributions:

ρm(t) = ρb(t) + ρdm(t). (2.26)

Baryons - make up the familiar matter of our universe (protons and neutrons).

Since the universe is charge neutral, there must be equal number of protons and

electrons (charged leptons). An elaborate review of Big Bang Nucleosynthesis

(BBN) is given by Steigman [221].
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Dark matter - The existence of non-baryonic dark matter has been inferred

from its gravitational manifestations through the flat rotation curves of galax-

ies, the mass-to-light ratios in clusters of galaxies, and gravitational lensing of

background sources. An extended discussion of the current status of particle dark

matter, including experimental evidence and theoretical motivations, is presented

by Bertone et al. [22], Sellwood and Kosowsky [207].

Vacuum

If the cosmological constant term is moved to the right-hand-side on Einstein’s

equations, it can be associated to the vacuum energy-density, given by

ρΛ ≡ Λ

8πG
. (2.27)

At future cosmic times, while the matter and radiation density dilute away, the

vacuum energy-density remains with the same constant value ρΛ. The vacuum

energy can be modelled as a perfect fluid with negative pressure equal to pΛ =

−ρΛ, which corresponds to an equation-of-state wΛ = −1. For a review about the

cosmological constant term see e.g. Carroll [36], Padmanabhan [174], Peebles and

Ratra [176]. The cosmological constant is also seen as the simplest form of a more

generic ‘dark energy’ component, commonly considered as the main candidate to

explain the current acceleration of the universe. We shall see in Chapter 6 that

wDE(a) evolving in time provides a slightly better description for the dark-energy

equation-of-state.

Curvature

The contribution of the spatial curvature can be considered as any other energy

component by defining a fictitious energy density:

ρk ≡ − 3κ

8πG
a−2. (2.28)

This energy-density is described by an equation-of-state wk = −1/3, for which

the scale factor evolves proportionally to the cosmic time a ∝ t. The general
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behaviour of the curvature term is easily understood if we rewrite the Friedmann

equation, with a vanish cosmological constant, in the following way(
ȧ

a

)2

=
8πG

3
(ρ+ ρκ). (2.29)

For a positive density contribution ρ, the universal expansion can only be stopped

if the universe is closed κ > 0 (ρκ < 0), otherwise it will expand forever.

Missing matter

If the Friedmann equation is written in terms of the present energy-density com-

ponents, we have(
ȧ

a

)2

=
8πG

3

[
ρr,0 a

−4 + ρm,0 a
−3 + ρk,0a

−2 + ρΛ,0a
0
]
. (2.30)

Notice that the right-hand-side can be seen as a power series expansion, however

with a missing component with contribution a−1. To complete the series, we

include this term and named it as the missing-energy component [235], for which

its energy-density satisfies

ρX(t) = ρX,0 a
−1, and a ∝ t2. (2.31)

The missing-energy component has therefore an equation-of-state wX = −2/3,

and behaves similarly to domain walls [20, 240]. We explain in more detail about

this new term in Chapter 7.

A summary of the main components of the universe, along with their be-

haviour, is shown in Table 2.1. Before solving the cosmological equations for the

whole mixture of perfect-fluid components, we include some essential notation:

Hubble parameter: The expansion rate of the universe is characterised by the

Hubble parameter:

H(t) ≡ ȧ(t)

a(t)
, (2.32)
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component Ωi wi ρ(a) a(t) H(t)

radiation Ωr 1/3 ∝ a−4 ∝ t1/2 1/2t

matter Ωm 0 ∝ a−3 ∝ t2/3 2/3t

curvature Ωk -1/3 ∝ a−2 ∝ t 1/t

missing matter ΩX -2/3 ∝ a−1 ∝ t2 2/t

cosmological constant ΩΛ -1 ∝ a0 ∝ exp(
√

Λ
3
t) const

Table 2.1: Constituents of the universe and their cosmological parameters: den-
sity parameter Ωi, equation-of-state parameter wi; and their behaviour: density
evolution ρ(a), scale factor a(t), Hubble parameter H(t).

where the present expansion rate, being H(t = t0), is called the Hubble constant

H0. As the Hubble constant is still not known with great accuracy, it is conven-

tional to denote it through the dimensionless parameter h, such that H0 = 100h

km s−1Mpc−1 = h/3000 Mpc−1.

Deceleration parameter: The deceleration parameter q(t), is defined by

q(t) ≡ − ä(t)a(t)

ȧ2(t)
. (2.33)

As the name suggests, it describes whether the expansion of the universe is slow-

ing down (q > 0) or accelerating (q < 0).

Density parameter: We also introduce the ratio of the energy-density relative

to the critical density ρc ≡ 3H2/8πG, as the dimensionless density parameter:

Ωi(t) ≡ ρi(t)

ρc(t)
, (2.34)

where the index ‘i’ labels a single type of component, such as matter, radiation,

etcetera. The present critical density is ρc,0 = 1.88h2 × 10−22 gcm−3.
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Redshift: For convenience, we express the scale factor in terms of the redshift z

of light emitted at time t1 from a cosmological source, as:

1 + z =
a(t0)

a(t1)
. (2.35)

Redshift is used to refer to the time at which the scale factor was a fraction

1/(1 + z) of its present value. It is also used to refer to the distance that light has

travelled since that time [139].

2.1.3 The cosmological field equations

We have computed the evolution of the scale factor for a universe composed by

single-independent fluids: radiation, matter, vacuum, spatial curvature, vacuum

energy and missing energy. To make the basic Friedmann models more realistic,

we need to take into account the whole mixture of these components. Suppose

that within the mixture, the distinct fluids do not interact with each other but

only through their mutual gravitation. The total energy-momentum tensor of a

multiple-component fluid is thus given by

T µν =
∑
i

(T µν)i, (2.36)

where i labels the sum over various constituents, each of them individually mod-

elled as a single perfect-fluid with pi = wiρi. Using the definitions introduced

above, the Friedmann equations (2.14) and (2.15) for a multi-fluid universe are

now written in the following way(
H

H0

)2

=
∑
i

Ωi,0a
−3(1+wi) + Ωk,0a

−2, (2.37)

Ḣ +H2 = −4πG

3

∑
i

ρi(1 + 3wi). (2.38)

These equations, at any cosmic time, can be written in the elegant forms:

ΩT ≡
∑
i

Ωi = 1− Ωk, (2.39)

q =
1

2

∑
i

Ωi(1 + 3wi). (2.40)
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Figure 2.1: The evolution of density parameters Ωi(a) are seen as a succession of
several epochs, each of them dominated by different components: radiation, matter,
curvature and cosmological constant.

The curvature density-parameter Ωk = −k/H2R2, determines the normalisation

of the scale factor (2.3), or curvature radius:

R0 = H−1
0

√
−k/Ωk,0 =

H−1
0√|Ωk,0|

. (2.41)

In a universe with positive curvature, R0 is just the radius of the 3-sphere. On

the other hand, we notice that the matter distribution (2.39) clearly determines

the spatial geometry of the universe: ΩT < 1 (open), ΩT = 1 (flat) and ΩT > 1

(closed).

The Friedmann equations have exact solutions in just a few simple cases,

for instance in a universe modelled by perfect-fluids. For this particular case,

the density parameters and their dependence on the scale factor are plotted in

Figure 2.1. In this Figure, the cosmic evolution of the different constituents are

seen as a succession of several epochs, each of them corresponding to a different

perfect-fluid. At the earliest stages, radiation dominates because of its behaviour

ρr ∝ a−4. Then, at aeq ≈ 4.2× 10−5h−2, the radiation contribution equals that of

matter, which starts dominating afterwards. It is noticeable that the curvature
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Figure 2.2: Deceleration parameter q(z) as a function of redshift z for a multi-fluid
universe. Notice that the universe is currently accelerating (q(z = 0) < 0).

term is almost negligible due to the initial conditions taken (see Section 3.4).

Finally, the cosmological constant term dominates over the late-time evolution

of the universe, and remains so for all time due to its constant energy-density

behaviour.

From expression (2.40), we observe that the sign of (1 + 3wi) determines

whether the universe is accelerating (q < 0) or decelerating (q > 0). If the major

contribution comes from a fluid(s) with wi > −1/3 the expansion of the universe

will gradually slow-down due to the action of gravity. On the other hand, if wi <

−1/3 the pressure component acts as a ‘repulsive’ term leading to an accelerated

expansion. For instance the cosmological constant term, which dominates over

the dynamics of the universe at low-redshift, is the main reason for the present

accelerated expansion of the universe, seen in Figure 2.2.

2.1.4 Distances and Horizons

The particle horizon is the distance light could have travelled since the origin of

the universe. Regions further apart could never have been causally connected. In

a time dt light travels a comoving distance dx = dt/R, thus the total comoving
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distance travelled since the big-bang corresponds to

η ≡
∫ t

0

dt

R(t)
=

1

R0

∫ a

0

da

a2H(a)
=

1

R0

∫ ∞
z

dz

H(z)
. (2.42)

No information could have propagated further than η on the comoving grid since

the beginning of time [60], hence η is called the comoving horizon. We can also

think of η as a time variable, named the conformal time. The FRW metric, in

terms of the conformal time, then becomes

ds2 = a2(η)

[
dη2 − dr2

1− κr2
− r2dΩ2

]
. (2.43)

In conformal coordinates null geodesics are always at 45◦ angles and light cones

are Minkowskian, since the metric is conformally flat: gµν = a2ηµν . Moreover,

by changing the order of integration of (2.42), we can also define the comoving

distance dc, or event horizon, light could have travelled between a source at scale

factor R and an observer today [60], as

dc =

∫ t0

t

dt

R(t)
=

1

R0

∫ z

0

dz

H(z)
= χ. (2.44)

A related concept is the proper distance dp corresponding to the particle horizon:

dp(t) ≡ R(t)

∫ t

0

dt

R(t)
= R(t)η(t). (2.45)

Regions separated by distances greater that the proper distance dp are not causally

connected. Furthermore, the Hubble radius or Hubble distance is defined by

dH(t) = H−1(t). (2.46)

The Hubble distance dH(t), often described simply as the ‘horizon’, corresponds

to the typical length-scale over which physical processes in the universe operate

coherently. It is also the length-scale at which general-relativistic effects become

important; on scales much less than dH(t) (within the horizon), Newtonian theory

is often sufficient to describe the effects of gravitation [92].

We also introduce the comoving Hubble distance as:

χH =
dH(t)

R(t)
=

1

H(t)R(t)
=

1

Ṙ(t)
, (2.47)
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2.1 The Homogeneous Universe

which gives the χ-coordinate corresponding to the Hubble distance.

A classical way of measuring distances in astronomy is to measure the flux

from an object of known luminosity, for example from Supernovae Type Ia (SNe

Ia). Let us consider the observed flux F at a distance dL from a source of known

luminosity L:

F =
L

4πd2
L

. (2.48)

Then, the luminosity distance dL in terms of measurable quantities is

dL ≡ (1 + z)R0Sk(χ). (2.49)

The distance-redshift relation is, in fact, one of the most important cosmological

tests. This is because given the observables H0, Ωi,0 and the expression (2.49) we

can compute the luminosity distance to an object at any redshift z. Conversely,

for a population of standard candles with absolute magnitude M , and apparent

magnitude m, we can measure the distance modulus µ at a given redshift z,

defined by

µ ≡ m−M = 5 log(dL) + 25. (2.50)

Then, the relationship of µ with redshift allows us to estimate the luminosity

distance and thereby constrain the cosmological parameters, as we will see in

Chapter 3. Another classical distance measurement in astronomy is to measure

the angle δθ subtended by an object of known physical size l. The angular distance

is then defined as dA = l/δθ. From the angular part of the FRW metric, we have

dA ≡ R0Sk(χ)

(1 + z)
. (2.51)

Figure 2.3 sketches the distances dc, dL and dA in terms of redshift. It is

worthwhile noticing that for small scales, all these distance measures coincide

d ' z

H0

, (2.52)

where the linear evolution of distance with redshift is referred as the Hubble

law [102].
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Figure 2.3: Comoving distance dc, luminosity distance dL, and angular distance
dA for a universe filled with the same constituents as in Figure 2.1.

2.2 Inflation

Even though the Hot Big Bang model possesses a strong observational support,

there are still certain inconsistencies or unexplained features to deal with: the

flatness, horizon and monopole problems, amongst many others. The inflationary

model offers the most elegant way so far proposed to solve these problems and

therefore to understand why the universe is so remarkably in agreement with the

standard cosmology. This model was initially introduced by Guth [85], followed

by Linde [142]. For an extended review we refer to the textbooks Liddle and Lyth

[139], Linde [143], Mukhanov [167]; and papers: Baumann [21], Liddle [135], Lyth

and Riotto [148], Olive [172], Riotto [194].

Let us examine some of the problems of the Hot Big Bang model.

2.2.1 Shortcomings of the Hot Big Bang

Flatness problem

The Friedmann equation (2.39) can be seen in the following form

ΩT − 1 =
κ

(aH)2
. (2.53)
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2.2 Inflation

Written in this way, we notice that ΩT = 1 is a very special case. If at the begin-

ning the universe was perfectly flat, then it remains so for all time. Nevertheless,

a flat geometry is an unstable critical situation, that is, for even a tiny deviation

from it, ΩT would have evolved quite differently and very quickly the universe

would become more curved. This can be seen as a consequence of aH being a

decreasing function of time during radiation or matter domination epoch. We

observe that from (2.53) and Table 2.1:

| ΩT − 1 | ∝ t radiation domination,

| ΩT − 1 | ∝ t2/3 dust domination.

Since the present age of the universe is estimated to be t0 ' 1017 sec [125], from

the above equations we can deduce the required value of | ΩT − 1 | at different

early-times in order to obtain the correct value of spatial-geometry at present

time. For instance, let us consider some particular epochs:

• Decoupling (t ' 1013 sec), we need | ΩT − 1 | ≤ 10−3.

• Nucleosynthesis (t ' 1 sec), we need | ΩT − 1 | ≤ 10−16.

• Planck epoch (t ' 10−43 sec), we need | ΩT − 1 | ≤ 10−64.

Consequently, at early times | ΩT − 1 | had to be fine-tuned extremely close to

zero in order to reach its actual observed value [120].

Horizon problem

The horizon problem is one of the most important problems within the Big Bang

model, as it refers to the communication between different regions of the universe.

The age of the universe is finite and hence even light should have only travelled a

finite distance by any given time. According to the standard cosmology, photons

decoupled from the rest of the components at temperatures about Tdec ≈ 0.3 eV

(zdec ≈ 1100), from this time on photons free-streamed and travelled basically

uninterrupted until reach us, giving rise to the region known as the observable

universe. This spherical surface at which decoupling process occurred is called the

surface of last scattering. The primordial photons are responsible for the CMB
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Figure 2.4: Temperature fluctuations observed in the CMB measured by the
WMAP-7 experiment. The colour scale represents temperature fluctuations: from
−30µK to 30µK. Figure reprinted from [125].

radiation we observe today. Looking at their fluctuations is thus analogous to

taking a snapshot of the universe at that time (about tdec ≈ 380, 000 years after

the Big Bang), as seen in Figure 2.4.

Figure 2.4 shows light seen in all directions of sky. These primordial photons

have nearly the same temperature Tcmb = 2.725 K plus small fluctuations (about

one part in one hundred thousand). Being at the same temperature is a property of

thermal equilibrium, hence observations are easily explained if different regions of

the sky have been able to interact and moved towards thermal equilibrium before

decoupling. Oddly, the comoving horizon over which causal interactions occurred

before photons decoupled was significantly smaller than the comoving distance

that radiation travelled after decoupling. This means that photons coming from

sky regions separated by more than the horizon scale at last scattering, typically

about 1◦, would not have been able to interact and establish thermal equilibrium

before decoupling. Therefore, the Big Bang model by itself does not offer an

explanation of why temperatures seen in opposite directions of the sky are so

nearly the same; the homogeneity must have been part of the initial conditions.

Monopole problem

The monopole problem was initially the motivation to develop the Inflationary

cosmology [84]. The monopole, and other relics, are components of the universe

that are expected to emerge as consequence of topological defects in the Higgs
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field which appear in Grand Unified Theories (GUTs). From particle physics

models, the number density of monopoles, at TGUT ' 1015 GeV, is estimated to

be nM > 10−10nγ. Any subsequent physical processes are expected to be inefficient

at reducing the ratio nM/nγ. Hence, the present density of monopoles per volume

is

n0,M > 10−10n0,γ ' n0,b. (2.54)

For typical GUTs, mGUT ' 1014−1015 GeV, we have mM ' 1016 GeV (' 10−8 g),

which corresponds to a density parameter of order [47]:

ΩM,0 >
mM

mp

Ωb ' 1016. (2.55)

According to this prediction, the universe would be dominated by magnetic

monopoles, in contrast with current observations: no one has found any monopole

yet [9].

2.2.2 Cosmological Inflation

Inflation is defined as the epoch in the evolution of the universe in which the

scale factor is quickly accelerated in just a fraction of a second:

INFLATION ⇐⇒ ä > 0, (2.56)

⇐⇒ d

dt

(
1

aH

)
< 0. (2.57)

The factor 1/(aH) corresponds to the comoving Hubble radius (2.47), which is

interpreted as the observable universe becoming smaller during the inflationary

period (sketched by the red circle in Figure 2.5). This process allowed our present

observable universe to lie within a region located well inside the Hubble radius

early on during inflation [139]. If this brief period of accelerated expansion oc-

curred, then it is possible that the aforementioned problems of the Big Bang can

be solved. From the acceleration equation, we can write the condition for inflation

in terms of the required material to drive the expansion:

ä > 0 ⇐⇒ (ρ+ 3p) < 0. (2.58)
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Figure 2.5: Schematic behaviour of the comoving Hubble radius during the Infla-
tionary period (sketched by the red circle).

Because in standard physics it is commonly assumed ρ as positive, then to satisfy

the acceleration condition it is necessary for the overall pressure to have p < −ρ/3.

Nonetheless, neither a radiation nor a matter dominated epoch satisfies such

condition. A typical solution would be a universe dominated by a cosmological

constant Λ at the earliest stages. As we have shown in Table 2.1, a cosmological

constant leads to an exponential expansion, and hence the condition (2.57) would

be naturally fulfilled; this epoch is called de Sitter stage. Let us postpone for a bit

the problem of finding a component which may satisfy this inflationary condition,

and look what happens when a general solution is considered.

Flatness solution

If somehow there was an accelerated expansion, 1/(aH) tends to decrease with

time, and hence from the expression (2.53), ΩT is driven towards the unity rather

than away from it. In this sense, inflation magnifies the curvature radius of the

universe, so locally the universe seems to be flat with great precision, as shown

in Figure 2.6. Then, we may ask ourselves by how much should 1/(aH) decrease.

If the inflationary period started at time t = ti and ended approximately at the

beginning of the radiation dominated era (t = tf ), then

| ΩT (10−34sec)− 1 |t=tf∼ 10−54,
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Figure 2.6: Evolution of the density parameter ΩT , during the inflationary period.
ΩT is driven towards unity.

and
| ΩT − 1 |t=tf
| ΩT − 1 |t=ti

=

(
ai
af

)2

≡ e−2N . (2.59)

So, the required condition to reproduce the value of ΩT,0 today is that inflation

lasted for at least N ≡ ln a & 50, then ΩT will be extraordinarily close to one

that we still observe it today.

Horizon problem

During inflation the universe expanded drastically and there was a reduction in

the comoving Hubble length. That is, a tiny region located inside the Hubble

radius evolved and constituted our present observable universe, as seen in Figure

2.7, which represents the physical process of Figure 2.5. Scales that were outside

the horizon at CMB decoupling were in fact inside the horizon before inflation.

The region of space corresponding to the observable universe therefore was in

thermal equilibrium before inflation and the uniformity of the CMB is essentially

explained.

Monopole problem

The monopole problem is solved by noticing that during the inflationary epoch

the universe led to a dramatic expansion over which the density of the unwanted

particles were diluted away. Generating enough expansion, the dilution made sure
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Figure 2.7: Physical evolution of the observable universe during the inflationary
period.

that particles stayed completely out of our observable universe, making pretty

difficult to localise any single monopole.

2.2.3 Single-field Inflation

As we have pointed out, a period of accelerated expansion can be created by a

cosmological constant Λ, and hence solve the aforementioned problems. After a

brief period of time, however, inflation must end and its energy be converted into

conventional matter/radiation; this process is called reheating. In a universe dom-

inated by a cosmological constant, the reheating process is seen as Λ decaying

into conventional particles. Nevertheless, claiming that Λ is able to decay is still a

naive way to face the problem. On the other hand, scalar fields (spin-0 particles)

can behave like a dynamical cosmological constant. There currently exists a broad

diversity of models suggested to give rise the Inflationary period, see for instance

[144, 148, 172]. Here, we limit ourselves to single scalar-field models based on

general gravity, i.e. derived from the Einstein-Hilbert action.

Let us consider a scalar field minimally coupled to gravity, with an arbitrary

potential V (φ), specified by the action

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ)

]
. (2.60)
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The energy-momentum tensor corresponding to this scalar field is given by

Tµν = ∂µφ∂νφ− gµν [
1

2
∂σφ∂

σφ+ V (φ)]. (2.61)

By comparing (2.61) to the energy-momentum tensor of perfect fluids (2.13), one

can identify an associated energy-density ρφ and pressure pφ for the scalar-field.

In a FRW background, they are found to be

T00 = ρφ =
1

2
φ̇2 + V (φ) +

1

2a2
(∇φ)2, (2.62)

Tii = pφ =
1

2
φ̇2 − V (φ) +

1

6a2
(∇φ)2, (2.63)

with its corresponding equation-of-state pφ = wφρφ.

To provide a better understanding of the inflaton field, φ can be split up as

φ(t,x) = φ(t) + δφ(t,x), (2.64)

where φ(t) is considered a classical field, that is, the mean value of the infla-

ton field on the homogeneous and isotropic state; whereas δφ(t,x) describes the

quantum fluctuations around φ(t) (we will see more about δφ in Section 2.4.1).

The evolution equation for the background field φ is thus given by

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.65)

From the structure of the effective energy-density and pressure, the Friedmann

and the acceleration equations for a homogeneous single-scalar field become

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (2.66)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (2.67)

Therefore, the inflationary condition to be satisfied is φ̇2 < V (φ), which is easily

fulfilled with a suitable flat potential.
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reheating

Figure 2.8: Schematic Inflationary process followed by a reheating epoch. Figure
reprinted from [21].

2.2.4 Slow-Roll approximation

Based on the single scalar-field approach, it is useful to suggest a model starting

with a nearly flat potential, i.e. initially satisfies the condition φ̇2 � V (φ). In

this case the field is slowly rolling down on its potential; such an approximation

is called slow-roll [138, 140]. In this case φ̈ is negligible because the universe is

dominated by the cosmological expansion. The equations of motion (2.65) and

(2.66), under the slow-roll approximation, then become

3Hφ̇ ' −dV
dφ

, (2.68)

H2 ' 8πG

3
V (φ). (2.69)

The slow-roll approximation is consistent if the slope and curvature of the po-

tential are small: V,φ, V,φφ � V . The inflationary process can be summarised as

an accelerated universe which takes place when the kinetic part of the inflaton

field is subdominant over the potential V (φ) term. Then, when both quantities

become comparable inflation ends giving rise to the reheating process. Figure 2.8

displays the schematic behaviour of the inflationary process. It is now useful to

introduce the potential slow-roll parameters εv and ηv in the following way [138]:

εv(φ) ≡ 1

16πG

(
V,φ
V

)2

, ηv (φ) ≡ 1

8πG

V,φφ
V

, (2.70)
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where εv measures the slope of the potential and ηv the curvature. Equations

(2.68) and (2.69) are in agreement with the slow-roll approximation when the

following conditions hold

εv(φ)� 1, | ηv(φ) |� 1. (2.71)

These conditions are necessary but not sufficient since even if the potential is flat,

as it may be that the scalar field has a large velocity. The physical meaning of

εv(φ) can be explicitly seen by expressing equation (2.58) in terms of φ:

ä > 0 =⇒ εv(φ) < 1. (2.72)

Hence, inflation ends when the value εv(φend) = 1 is approached. Within these

approximations, it is straightforward to find out the scale factor a between the

beginning and end of inflation. Because the size of the expansion is an enormous

quantity, it is useful to compute it in terms of the e-fold number N defined by

N ≡ ln
a(tend)

a(t)
=

∫ te

t

H dt ' 8πG

∫ φ

φe

V

V,φ
dφ. (2.73)

An estimate of the e-folds number N(k) is given by [139]:

N(k) = 62− ln
k

a0H0

+ corrections,

where the comoving wavenumber k is evaluated at the crossing Hubble radius

during inflation. The last ‘correction’ is a small term related with energy scales

during the inflationary process. The precise value for the second quantity depends

on the model as well as normalisation factors, however it does not present any

significant change to the total amount of e-folds. Therefore, the value of the

e-folds number is ranged to 50-70 [148].

2.3 The Perturbed Universe

The homogeneous and isotropic model provides an accurate description of the

physical properties of the universe on large scales: the expansion history and the

evolution of its energy content. Nevertheless, at small scales homogeneity and
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isotropy are no longer valid approximations, and therefore we have to make use

of a more complex theory to describe, for instance, the temperature anisotropies

observed in the CMB and the matter distribution. We have seen that the tem-

perature of the photons in the CMB presents small anisotropies compared to the

background temperature ∆T/T̄ ∼ 10−5. This tiny value supports the use of linear

perturbation theory to predict accurately its statistical distribution. The idea of

perturbation theory is straightforward: perturb the metric and the stress-energy

tensor in the Einstein’s equations about the background and, to first order, drop

products of small quantities. Then solve the coupled system of equations

δGµν = 8πGδTµν . (2.74)

This section is aimed to present an outline of linear perturbation theory, but

for an extended review, we refer to Bardeen [17], Dodelson [60], Hu and Dodel-

son [98], Kodama and Sasaki [119], Liddle and Lyth [139], Ma and Bertschinger

[149], Mukhanov [167], Mukhanov et al. [168]; special attention is paid to the

papers written by Challinor [39], Doran [63], Durrer [65], Knobel [118], Kurki-

Suonio [123].

2.3.1 Linear perturbations

Metric perturbations

We begin the study of relativistic linear-perturbation theory by introducing a

small perturbation hµν to the metric, in the form of

gµν −→ ḡµν + a2hµν , (2.75)

where the unperturbed spacetime ḡµν is referred as the background, described by

the FRW metric, and hµν satisfies hµν � ḡµν . In this section, to avoid unnecessary

complications, we shall only consider flat (k = 0) universes and work in terms of

the conformal time (2.42); e.g. the conformal Hubble parameterH ≡ ∂ηa/a = aH.

The most general perturbation to the background metric is given by

hµνdx
µdxν = −2Adη2 − 2Bidηdx

i + 2Hijdx
idxj. (2.76)
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The three new functions represent a scalar field A(η,x), a vector field Bi(η,x)

and a symmetric trace-free tensor field Hij(η,x), all of them defined over the

background 3-space. One has to bear in mind, however, that this scalar, vector

and tensor quantities are not yet the true scalar, vector, tensor perturbations, as

they can also be decomposed, such as

Bi = ∂iB︸︷︷︸
scalar part

+ B
(V )
i︸︷︷︸

vector part

, (2.77)

where the vector part is transverse (divergence free) ∂iBi = 0. A similar decom-

position applies to tensors:

Hij = HLγij + ∂〈i∂j〉HT︸ ︷︷ ︸
scalar part

+ ∂(iH
(V )
j)︸ ︷︷ ︸

vector part

+ H
(T )
ij︸︷︷︸

tensor part

, (2.78)

where

∂〈i∂j〉H ≡ ∂i∂jH − 1

3
δij∇2H, (2.79)

∂(i∂j)H ≡ ∂i∂jH +
1

3
δij∇2H. (2.80)

HT is trace-free; H
(V )
i is transverse; and H

(T )
ij is symmetric, trace-free and trans-

verse δik∂kH
(T )
ij = 0. This decomposition is unique in Euclidean space for a

smooth, bounded Hij that decays at infinity [222]. The most general scalar-

perturbation of the metric has therefore ten separate degrees-of-freedom: A (1),

Bi (3) and Hij (6). But as discussed earlier, there are only six independent Ein-

stein field equations, and hence we must fix the remaining four degrees-of-freedom

by a choice of coordinates or the gauge choice.

Energy-momentum perturbations

In a similar way we have perturbed the metric, we now introduce a perturbation

to the energy-momentum tensor:

T µν −→ T̄ µν + δT µν , (2.81)
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where T̄ µν represents a fluid (2.13) with the addition of an anisotropic stress Πµ
ν ,

defined on the FRW background. Considering perturbations up to linear order,

the energy-momentum tensor is thus given by

T 0
0 = −ρ̄(1 + δ), (2.82)

T i0 = (ρ̄+ p̄)vi ≡ qi, (2.83)

T 0
i = −(ρ̄+ p̄)(vi +Bi) (2.84)

T ij = p̄[(1 + πL)δij + Πi
j]. (2.85)

where qi is defined as the 3-momentum density, Π is the anisotropic-stress tensor

with traceless part πij = p̄Πi
j, Π0

0 = Π0
i = Πi

0 = 0, and p̄πL ≡ δp. The density

perturbation and the velocity are, respectively, defined by

δ(η,x) ≡ ρ− ρ̄
ρ̄

, ui = avi. (2.86)

Gauge transformations

The perturbation of a generic field Q = Q̄+εQ(1) obeys the gauge transformation

law:

Q(1) → Q(1) + LXQ̄, (2.87)

where LX denotes the Lie derivative in direction of the vector field X. Let us

consider the behaviour of hµν (2.76) under gauge transformations:

hµν → hµν + Lξḡµν , with ξα = (T, Li), (2.88)

where T (η) is a scalar function, and the vector Li(η) is decomposed into its

scalar and vector part. At linear order, the scalar, vector and tensor perturbations

evolve independently (they decouple), and it is therefore possible to analyse them

separately. Here we concentrate on scalar perturbations, as they account by far

for the largest contributions of anisotropies measured by today’s experiments, and

just quote tensor results at the end of this section. Then, after some identities

from differential geometry, and following Doran [63] and Durrer [65], we have the
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gauge transformations for the scalar metric variables:

A → A− a′

a
T − T ′, (2.89)

B → B + L′ + kT, (2.90)

HL → HL − a′

a
T − k

3
L, (2.91)

HT → HT + kL, (2.92)

and similarly for the energy-momentum perturbations:

δ → δ + 3(1 + w)
a′

a
T, (2.93)

v → v + L′, (2.94)

πL → πL − p̄′

p̄
T = πL + 3(1 + w)

c2
s

w

a′

a
T, (2.95)

where the sound speed is given by c2
s ≡ p̄′/ρ̄′.

There is an infinite number of choices for the functions T (η) and L(η), however

it is common to choose them such that two of the perturbation variables vanish.

A popular choice is the longitudinal or Newtonian gauge1. This gauge chooses

kL = −HT and kT = −L′ − B, so that HT = B = 0, and the scalar metric

perturbation is of the form [168]

h(S)
µν = −2Ψdη2 + 2Φγijdx

idxj, (2.96)

where Ψ and Φ are gauge-invariant quantities, called Bardeen potentials [17]; we

shall see that Ψ plays the role of the gravitation potential. In general they are

defined by

Ψ ≡ A− a′

a
k−1σ − k−1σ′, (2.97)

Φ ≡ HL +
1

3
HT − a′

a
k−1σ. (2.98)

1 Two mores gauges will be useful throughout this chapter:

Comoving − orthogonal gauge : qi = B = 0.

Spatially − flat gauge : HL = HT = 0.
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where σ ≡ k−1H ′T −B vanishes in the longitudinal gauge.

Choosing a particular gauge may however introduce ‘gauge artifacts’, i.e. de-

grees of freedom which are not physical, nevertheless the calculations turn out to

be simpler. The gauge invariant energy-momentum perturbations are defined in

Appendix B.

Perturbed Einstein’s and conservation equation

Having defined the linear perturbations of the metric and the energy-momentum

tensor, we are now in position to solve the perturbed Einstein’s equations. We

derive the equations for perturbed variables in the longitudinal gauge and just

quote the gauge-invariant equations in Appendix B.

The first-order perturbed Einstein’s equations give [63, 167]:

k2Φ + 3
a′

a

(
Φ′ − a′

a
Ψ

)
= 4πGa2ρ̄δ, (2.99)

k

(
a′

a
Ψ− Φ′

)
= 4πGa2v(ρ̄+ p̄), (2.100)

−k2(Φ + Ψ) = 8πGa2p̄Π, (2.101)

and the energy-momentum conservation equations:

− δ′ = (1 + w)[kv + 3Φ′] + 3
a′

a
wΓ + 3

a′

a
δ(c2

s − w), (2.102)

v′ =
a′

a
(3c2

s − 1)v + kΨ +
kc2

s

1 + w
δ +

kw

1 + w

[
Γ− 2

3
Π

]
, (2.103)

where Γ ≡ πL − c2
sδ/w can be viewed as an entropy production rate. Notice

that for perfect fluids, where Πµ
ν = 0, we have Φ = −Ψ. We also observe that

perturbations vanish for a cosmological constant component, e.g. δ′Λ = 0. The pre-

vious equations can be better understood by assuming the quasi-static approx-

imation. This approximation considers wavenumbers k deep inside the Hubble

radius (k � aH), where any function F satisfies

k2

a2
|F | � H2|F |, and |Ḟ | . |FH|. (2.104)
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2.3 The Perturbed Universe

Under this conditions, we recover the classical Poisson equation and, combining

(2.102), (2.103), the evolution of scalar perturbations for dust particles:

k2Φ = 4πGa2ρ̄δ, (2.105)

δ′′ +
a′

a
δ′ = −k2Ψ. (2.106)

Adiabatic and Isocurvature initial conditions

Adiabaticity requires that matter and radiation perturbations are initially in per-

fect thermal equilibrium. This implies that their velocity fields agree

v(γ) = v(ν) = v(b) = v(dm), (2.107)

and the density contrast satisfies the relation

1

4
δγ =

1

4
δν =

1

3
δb =

1

3
δdm. (2.108)

For adiabatic perturbations we have Γ = 0.

Isocurvature refers to those metric perturbations that initially vanish, i.e. Ψ = 0.

The most general perturbation on the energy-density is described by a linear com-

bination between adiabatic perturbations as well as isocurvature perturbations,

which the latter ones play an important role when more than one scalar field is

considered [139, 194].

2.3.2 The Boltzmann equation

The evolution of perturbations in the universe is quantified by the Boltzmann

equation:
df

dη
=
∂f

∂xi
∂xi

∂η
+
∂f

∂P

∂P

∂η
+
∂f

∂ni
∂ni

∂η
= C[f ], (2.109)

which relates the effects of gravity on the photon distribution function f to the

rate of interactions with other species, given by the collision term C. The com-

plete distribution function for each species can be split into background plus a

perturbation part:

f(η,x, P,n) = f̄(P ) + F (η,x, P,n), (2.110)
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where the distribution function of the cosmic microwave background with tem-

perature T̄ is

f̄ =

[
exp

(
E

T̄
− 1

)]−1

. (2.111)

We see that f̄ depends just upon the energy E of a photon; for observers at

rest E = −a p. The comoving momentum P = a2p has spatial momentum of

magnitude p and unit vector n, such that pi ≡ p ni. Writing the temperature

function T in terms of the photon brightness temperature perturbation ∆ ≡ ∆T/T̄ ,

we have

T (η,x,n) = T̄ (η)[1 + ∆(η,x,n)], (2.112)

and the perturbation part F can be written as

F (η,x, P,n) = −P ∂f̄

∂P
∆(η,x,n). (2.113)

The expansion of the temperature perturbation (∆) and polarisations (Q and U),

in terms of the spherical harmonics Y m
l (n), are

∆(η,x,n) =
∑
l

(−i)l∆l(k, η)Pl(k̂ · n), (2.114)

(Q± iU)(η,x,n) =
∑
l=2

(−i)l(E0
l ± iB0

l )

√
4π

2l + 1
∓2Y

0
l (n), (2.115)

where E and B are the electric and magnetic modes and the Pl’s represent the

Legendre polynomials. The Boltzmann equation thus leads (after a long calcula-

tion) to the evolution equation of temperature perturbations [63]:

∆′+ikµ∆+κ′∆ = −iµk[Φ+Ψ]−2Φ′+κ′
{

1

4
δγ − Φ− iµvb +

1

10
P2(µ)[

√
6E2 −∆2]

}
.

(2.116)

Note that the temperature perturbation ∆(n) is a function of either ∆(η,x,n) or,

in Fourier space, ∆(η,k,n); κ′ is the differential optical depth and µ = k−1k · n
the direction cosine.
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2.3 The Perturbed Universe

The same discussion applies to polarisation, by simply replacing F → G and

f̄ ′ → 0 (G denotes the linear polarisation distribution function). The evolution

of the polarisation perturbation is therefore

Q′ + ikµQ+ κ′Q =
κ′

10
{P2(µ)− 1}

[√
6E2 −∆2

]
. (2.117)

We notice that (2.116) is not manifestly gauge-invariant, however by defining

the gauge invariant temperature perturbation M = ∆ + 2Φ, and its multipole

decomposition

M(η,x,n) =
∑
l

(−i)lMl(η,k)Pl(n), (2.118)

the evolution equation (2.116) in gauge-invariant components (see Appendix B),

becomes:

M′+ ikµM+ κ′M = iµk[Φ−Ψ] + κ′
{

1

4
Dγ
g − iµvb +

1

10
P2(µ)

[√
6E2 −M2

]}
.

(2.119)

After integrating (2.119) for each l and applying orthogonality relations of the

Legendre polynomials, the hierarchy for M is hence given by [100]:

M′
0 = −k

3
Vγ, (2.120)

M′
1 = κ′(Vb − Vγ) + k(Ψ− Φ) + k

(
M0 − 2

5
M2

)
, (2.121)

M′
2 = −κ′(M2 − C) + k

(
2

3
Vγ − 3

7
M3

)
, (2.122)

M′
l = −κ′Ml + k

(
l

2l − 1
Ml−1 − l + 1

2l + 3
Ml+1

)
, l > 2, (2.123)

and similarly for the polarisation

E ′2 = −k
√

5

7
E3 − κ′(E2 +

√
6C), (2.124)

E ′l = k

(
2κl

2l − 1
El−1 − 2κl+1

2l + 3
El+1

)
− κ′El, l > 2. (2.125)

Here C =M2 −
√

6E2/10 and 2κl =
√
l2 − 4 are combinatorial factors.
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Massless neutrinos follow the same multipole hierarchy asM, however without

polarisation and Thompson scattering. Hence, the perturbed neutrino distribu-

tion N satisfies [63]:

N ′0 = −k
3
Vν , (2.126)

N ′0 = k(Ψ− Φ) + k

(
N0 − 2

5
N2

)
, (2.127)

N ′l = k

(
l

2l − 1
Nl−1 − l + 1

2l + 3
Nl+1

)
, l > 1. (2.128)

For completeness, we quote the hierarchy for the tensor multipoles, tempera-

ture ∆̃T
l , polarisation ∆̃P

l and cross-correlation ∆̃T,P
l [63, 248]:

∆̃T
0 = −k∆̃T

1 − κ′[∆̃T
0 − ψ]− h′, (2.129)

∆̃P
0 = −k∆̃T

2 − κ′[∆̃T
1 + ψ], (2.130)

∆̃T,P
l =

k

2l + 1

[
l∆̃T,P

l−1 − (l + 1)∆̃T,P
l+1

]
− κ′∆̃T,P

l ; l ≥ 1, (2.131)

where h is the longitudinal-scalar part of tensor decomposition in (2.78), and ψ

is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0 +
6

7
∆̃P

2 −
3

70
∆̃P

4 . (2.132)

The Boltzmann hierarchy is nowadays solved numerically with software pack-

ages such as CMBFAST [206] to produce the CMB spectrum. Also, a widely

used implementation is the CAMB code [134], often embedded in the analysis

package CosmoMC. Different codes have also been implemented to compute the

CMB spectrum, i.e. CMBEASY is fully object oriented C++ [62], CLASS is

written in C [131], and CMBquick is written in Mathematica, but is unavoidably

slow [184].

2.4 The Power Spectrum

The density contrast δ, introduced in the previous section, can be considered

statistically as a random field with zero mean, 〈δ(x)〉 = 0. The measure of the
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clustering degree in the spatial direction r is determined by the correlation func-

tion ξ, which is defined as the product of the density contrast at two separate

points, x and x + r:

ξ(r) ≡ 〈δ(x)δ(x + r)〉. (2.133)

Because of statistical homogeneity and isotropy of a random field, the two-point

correlator depends only on the distance r = |r| between the two points. On the

other hand, the amplitude of fluctuations on different lengths are described by

the power spectrum P(k), which is simply the inverse Fourier transform of the

correlation function ξ:

〈δ̂(k)δ̂(k′)〉 =
2π2

k3
P(k)δD(k− k′), (2.134)

where δ̂ is the Fourier transform of the density contrast δ. The Dirac’s delta

distribution δD guarantees that modes relative to different wave-numbers are un-

correlated in order to preserve homogeneity; P(k) has dependency only on the

magnitude of the momenta no on k direction because of isotropy. The normali-

sation factor 2π2/k3 in the definition of the power spectrum is conventional and

has the virtue of making P(k) dimensionless if δ(x) is.

2.4.1 Primordial power spectrum

Inflationary models have the merit that they do not only explain the homogeneity

of the universe on large-scales, but also provide a theory for explaining the ob-

served level of anisotropy. During the inflationary period, quantum fluctuations

of the field were driven to scales much larger than the Hubble horizon and then

became classical perturbations. Scalar, or curvature, perturbations are coupled

with matter in the universe and form the initial ‘seeds’ of structure formation.

Vector contributions are expected to be negligible since these modes decayed very

rapidly once they entered the Hubble horizon. Tensor perturbations do not couple

to matter, though they are associated to the generation of gravitational waves

[167].
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The fluctuations produced during the inflationary epoch are studied by con-

sidering quantum fluctuations δφ of the inflaton field introduced in (2.64):

φ(η,x) = φ̄(η) + δφ(η,x). (2.135)

The quantity δφ is interpreted as the field fluctuations on hypersurfaces with zero

intrinsic curvature. We assume linear perturbations generated by vacuum fluctu-

ations have uncorrelated Fourier modes, the signature of Gaussian perturbations.

It is convenient to write φ = φ̄+u/a, where u ≡ aδφ. Then, the expansion of the

action (2.60) to second order in u, during slow-roll inflation, leads to

S(2) ≈
∫

d4x
1

2

[
u′2 + (a′′/a)u2 − (∂iu)2

]
. (2.136)

Varying the action S(2), bearing in mind the field equation for the background

(2.65), follows to the equation of motion for u:

u′′ − a′′

a
u− ∂i∂iu = 0. (2.137)

After following quantum-field theory methods of canonical quantisation, the nor-

malised solution of Equation (2.137), in Fourier-space, is

uk(η) =
e−ikη√

2k

(
1− i

kη

)
, (2.138)

and a few e-folds after the Hubble exit, we have

uk(η)

a(η)
≈ iHe−ikη√

2k3
. (2.139)

Finally, combining (2.139), (2.134) and u = aδφ, the power spectrum generated

by the inflaton fluctuations is equal to

Pδφ(k) =

[
H

2π

]2

k=aH

, (2.140)

where the expression is evaluated at the horizon exit k = aH. This simple result is

very important, as it states that a light scalar-field in quasi-de Sitter spacetime ac-

quires an almost scale-invariant spectrum of fluctuations with amplitude (H/2π)2.
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2.4 The Power Spectrum

There is an important quantity that is conserved on large scales for adiabatic

scalar fluctuations: the comoving curvature perturbation R, also called the pri-

mordial value [39]. This quantity measures the spatial curvature on a comoving

slicing of space-time, and is related to the scalar field perturbation δφ by

R = −H
˙̄φ
δφ. (2.141)

The primordial spectrum of curvature perturbations PR(k) is therefore

PR(k) =

[(
H
˙̄φ

)(
H

2π

)]2

k=aH

. (2.142)

The creation of primordial gravitational waves corresponds to the tensor part

of the metric perturbation in (2.76): hij = H
(T )
ij = h

(T )
µν . In Fourier space, tensor

perturbations hij can be expressed as the superposition of two polarisation modes

hij = h+e+
ij + h×e×ij , (2.143)

where +, × represent the longitudinal and transverse modes. From Einstein’s

equations, it is found that each amplitude, h+ and h×, behaves as a free scalar

field in the sense that h+,× ≡ 8
√
π ψ+,×. Therefore, each h+,× has a spectrum

PT given by

PT (k) =

[
16

π
H2

]
k=aH

. (2.144)

The canonical normalisation of the field ψ+,× was chosen such that the ratio of

tensor-to-scalar spectra is

r ≡ PT (k)

PR(k)
= 16εv, (2.145)

where we have used the slow-roll parameters to write the last term.

2.4.2 CMB power spectrum

The primary anisotropies carried out by physical effects before the recombination

epoch, encoded in the fractional temperature perturbation, are expanded in terms

of the spherical harmonics on the surface of last scattering by

∆T

T̄
(η0,x0,n) =

∑
l,m

almYlm(n), (2.146)
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where the alm’s define the multipoles of the CMB anisotropy; x0 is our position

and η0 the present conformal time. Assuming the al,m’s are Gaussian random

fields, the two-point correlator gives

〈alma∗l′m′〉 = Clδll′δmm′ . (2.147)

The angular CMB power spectrum CTT
l is computed through the two-point cor-

relation function (2.133) by

C(θ) ≡
〈

∆T (n)

T̄

∆T (n′)
T̄

〉
=
∑
l

2l + 1

4π
ClPl(n · n′). (2.148)

where n ·n′ = cos θ, and we have used the addition theorem for spherical harmon-

ics to express the sum of products of Ylm’s in terms of the Legendre polynomials.

We consider initial conditions in terms of the conformal Newtonian gauge po-

tential Φini = R. Because the evolution equations for ∆ are independent of the

direction k, we may write

∆l(η0,k,n) = Φini(k)∆l(η0, k,n). (2.149)

Therefore the Cl’s are found to be

CXY
l =

4π

(2l + 1)2

∫
d3k

(2π)3
PR(k) ∆X

l (k)∆Y
l (k), (2.150)

where X and Y represent the temperature (T ) and polarisations (E or B); PR(k)

is the initial scalar power spectrum (2.142). The moments obtained from the line

of sight integration method [206], in terms of the spherical Bessel functions jl,

are given by

∆T
l = (2l + 1)

∫
dηjl(k[η − η0])ST (k, η), (2.151)

∆E
l = (2l + 1)

√
(l − 2)!

(l + 2)!

∫ η0

0

dηSE(k, η)jl(x), (2.152)

with the sources

ST = −eκ(η)−κ(η0)[Φ′ −Ψ′] + g′
[
Vb
k

+
3

k2
C ′
]

+ g′′
3

2k2
C

+ g

[
1

4
Dγ
g +

V ′b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C ′′
]
, (2.153)

SE =
3gC
4x2

, (2.154)
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where we have used x ≡ k(η0 − η) and the visibility function g ≡ κ′ exp(κ(η) −
κ(η0)). Similar results are quoted for the tensor contributions:

Ctens
XY ;l =

4π

(2l + 1)2

∫
d3k

(2π)3
PT (k) ∆tens

X;l (k)∆tens
Y ;l (k), (2.155)

where PT (k) is the initial tensor power spectrum (2.144), and the moments:

∆tens
T ;l =

√
(l + 2)!

(l − 2)!

∫ η0

0

dηStens
T (k, η)

jl(x)

x2
, (2.156)

∆tens
E,B;l =

∫ η0

0

dηStens
E,B(k, η)jl(x), (2.157)

with the sources (using (2.132)):

Stens
T (k, η) = h′ exp(−κ) + gψ, (2.158)

Stens
E (k, η) = g

{
ψ − ψ′′

k2
+

2ψ

x2
− ψ′

kx

}
−g′

{
2ψ′

k2
+

4ψ

kx

}
− 2g′′

ψ

k2
, (2.159)

Stens
B (k, η) = g

{
4ψ

x
+

2ψ′

k

}
+ 2g′

ψ

k
. (2.160)

Figure 2.9 shows the adiabatic CMB spectra for all the contributions: Tem-

perature, E-mode, B-mode and T -E cross-correlation. The left-hand-side of the

panel displays the CMB spectra for scalar perturbations, whereas the right-

hand-side tensor perturbations (gravitational waves). All of them in units of

l(l + 1)/2π[µK]2.

Let us examine in more detail the temperature power spectrum CT
l , which

is mainly determined by the expression (2.153). The density contrast Dγ
g is the

main contribution, driving the spectrum towards the oscillatory behaviour. It can

be seen as an intrinsic temperature variation over the background last-scattering

surface: δT/T ∝ Dγ
g/4. The Doppler shift, Vb-term, describes the blueshift caused

by last scattering electrons moving towards the observer. The term involving time

derivatives of the potentials, (Φ′ − Ψ′), is known as the integrated Sachs-Wolfe

effect (ISW) [198]. It describes the change of the CMB photon energy due to
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FIGURE 4. Temperature (black), E-mode (green), B-mode (blue) and T -E cross-correlation (red)

CMB power spectra from scalar perturbations (left) and tensor perturbations (gravitational waves; right).

The amplitude of the tensor perturbations is shown at the maximum amplitude allowed by current data

(r= 0.22 [44]). The B-mode spectrum induced by weak gravitational lensing is also shown in the left-hand
panel (blue; see Sec. 6.1.2).

to constrain gravitational waves since the sampling variance of the dominant scalar

perturbations is large at low l. Fortunately, CMB polarization provides an alternative

route to detecting the effect of gravitational waves on the CMB which is not limited by

cosmic variance [45, 46]; see Sec. 3.

2.7.4. Isocurvature modes

Adiabatic fluctuations are a generic prediction of single-field inflation models. How-

ever, multiple scalar fields typically arise in models inspired by high-energy physics,
such as the axion model [47], curvaton [48] and multi-field inflation [49, 50]. In such

models, if the fields decay asymmetrically and the decay products are unable to reach

chemical equilibrium with each other, an isocurvature contribution to the primordial

perturbation will result. The simplest, and best-motivated, possibility is an isocurva-

ture mode where initially the dominant fractional over-density is in the CDM, with a

compensating (very small) fractional fluctuation in the radiation and baryons [51]. The

amplitude of the CDM isocurvature mode is quantified by the gauge-invariant quantity

S ≡ !c−3!"/4, where !c is the CDM fractional over-density. Generally,S can be cor-

related with the curvature perturbation R, for example in the curvaton and multi-field
models.

In the CDM mode, the photons are initially unperturbed, as is the geometry: !"(0) =
0= #(0) and vb = 0. The different equations of state of the CDM and radiation lead to

the generation of a curvature perturbation. On large scales, R grows like a in radiation

Lecture notes on the physics of cosmic microwave background anisotropies March 30, 2009 18
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Figure 2.9: CMB spectra for all the contributions: Temperature, E-mode, B-
mode and T -E cross-correlation. The left-hand-side displays the scalar perturba-
tions whereas the right-hand-side tensor perturbations (gravitational waves). Fig-
ure reprinted from Challinor [40]

the evolution of the potentials along the line of sight. The terms involving C and

its derivatives describe polarisation effects and are far less important than the

Dγ
g term. Finally, the (Φ − Ψ) term arises from the gravitational redshift when

climbing out of the potential well at last scattering. The combination Dγ
g/4 −

(Φ− Ψ) is known as the ordinary Sachs-Wolfe effect (SW). This gives the main

contribution on scales that at decoupling were well outside the horizon [39, 63].

Figure 2.10 displays all these different contributions. These effects exhibit a series

of features at different scales of the universe, or in terms of the multipoles:

• The Sachs-Wolfe effect (l < 100) - The gravitational effects are the dominant

contributions at large angular scales. If we assume a nearly scale-invariant

scalar spectrum ns ≈ 1, then l(l + 1)Cl is approximately constant, shown

as a flat plateau at low multipoles.

• Intermediate scales (100 < l < 1000) - Perturbations inside the horizon

have evolved causally and produced the anisotropy at the last scattering
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Part-III Cosmology 50

Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: δγ/4+ψ (denoted SW for
Sachs-Wolfe; magenta); Doppler effect from vb (blue); and the integrated Sachs-Wolfe
effect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2π/(kχ∗).

If we make use of the standard integral∫ ∞

0

j2
l (x) dx =

1

2l(l + 1)
(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2π
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns − 1) gives an angular power spectrum going like

Cl ∼ Γ(l + ns/2− 1/2)

Γ(l − ns/2 + 5/2)
, (3.4.34)

where Γ(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe effect.

Tuesday, 19 February 2013

Figure 2.10: Total CMB temperature-spectrum and its different contributions:
Sachs-Wolfe (SW) Dγ

g/4 − (Φ − Ψ); Doppler effect V γ
b ; and the integrated Sachs-

Wolfe effect (ISW) coming from evolution of the potential along the line of sight.
Figure from Challinor [40]

epoch (lhor ≈ 200). The balance between the gravitational force and radi-

ation pressure is presented as series of characteristic peaks called acoustic

oscillations.

• Small scales (l > 1000) - The thickness of the last scattering surface leads

to a damping of CT
l ∼ l−4 at the highest multipoles, commonly called

the Silk effect. At these scales, important contributions are also provided

by secondary anisotropies: gravitational lensing, Rees-Sciama effect (RS),

Sunyaev-Zel’dovich effect (SZ), kinetic Sunyaev-Zel’dovich effect, Ostriker-

Vishniac effect (OV), foregrounds from discrete sources [1].

2.4.3 Matter power spectrum

The information regarding to the distribution of galaxies over the observed uni-

verse is encoded in the matter power spectrum Pm:

〈δm(k)δm(k′)〉 =
2π2

k3
Pm(k)δD(k− k′), (2.161)
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where the matter overdensity δm is related to the potential Φ(a,k) via the Poisson

equation (2.105):

δm(a,k) =
2

3

(
k

aH

)
Φ(a,k). (2.162)

The gravitational potential Φ(a,k) at late times can be written in terms of the

primordial value Φini set up during inflation, as

Φ(a,k) = T (k)g(a)Φini, (2.163)

where the transfer function T (k) describes the evolution of perturbations through

the epochs of horizon crossing and radiation/matter transition, while the growth

factor g(a) describes the wavelength-independent growth at late times.

On the other hand, the comoving curvature perturbation (B.11), in the comoving

gauge, can be written in terms of the potentials:

R(m) =
5 + 3w

3 + 3w
Φ, (2.164)

where we have made use of Equation (2.100) to eliminate v. Hence, during matter

domination, the density perturbation is given by

δm(a, k) =
2

5

(
k

aH

)
R(m). (2.165)

Combining these results, the power spectrum of matter density perturbations

when they re-enter the horizon during matter domination is

Pm(a, k) =
4

25

(
k

aH

)4

T 2(k)PR(k). (2.166)

An alternative definition for the matter power spectrum is Pm = 2π2Pm/k
3. It has

been shown that the transfer function of a matter component has the asymptotic

behaviour

T (k) '
{

1, if keq/k � 1,
(keq/k)2, if keq/k � 1.

(2.167)

where keq is the mode that enters the horizon at matter-radiation equality teq.

The precise form of the transfer function at all scales is found by solving the full
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Figure 2.11: The matter power spectrum Pm(k). At large scales the spectrum
behaves as ∝ k, whereas at small scales ∝ k−3.

general relativistic Boltzmann equation [60]. The matter power spectrum, in its

asymptotic form, behaves as:

Pm(k) '
{ ∝ k large scales,
∝ k−3 small scales.

(2.168)

Figure 2.11 shows the linear matter power spectrum at present time, in which we

can observe the behaviour described by (2.168).

An outline of the theoretical concepts revised in this chapter is displayed in

Figure 2.12 . The quantities shown in the bottom panel will allow us to establish

the connection with current and future cosmological observations, as we shall see

in the next chapter.
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Chapter 3
Statistics in Cosmology

In the previous chapter we have developed the main equations to describe the

evolution of the background and perturbed universe. We noticed, however, that

the whole structure of the CMB, matter power spectrum and luminosity dis-

tance depend strongly on the initial conditions emerging from the inflationary

era (PR,T ), on the matter-energy content (Ωi,0), and on the expansion rate his-

tory (H0). This chapter seeks to give a brief introduction of such quantities used

to describe the properties of the universe. We show current and future experi-

mental results used throughout the analysis: CMB, SNe and LSS amongst many

others. It also includes a short description of the Bayesian analysis to perform

the parameter estimation and model selection. Finally, at the end of the chapter,

by making use of the theoretical, observational and statistical tools included in

this work, we examine the standard ΛCDM model (spatially flat and non-flat),

and present the current constraints on the cosmological parameters.

3.1 The Cosmological Parameters

3.1.1 Base parameters

These parameters, commonly called standard parameters, are considered as the

principal quantities used describe the universe. They are not, however, predicted

by any fundamental theory, rather we have to fit them by hand in order to de-

termine which combination best describes the current astrophysical observations
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Figure 3.1: Dependence of the temperature power spectrum for three fundamen-
tal quantities: Curvature (Ωk), Baryons (Ωb) and Dark energy in the form of a
cosmological constant (ΩΛ).

[124, 136]. Variations of these parameters affect the amplitude and shape of the

spectra as well as the background evolution in many different ways, yielding to

very different universes. They are classified depending on whether they charac-

terise the background or the perturbed universe:

Background parameters

The present description of the homogeneous universe can be given in terms of the

density parameters Ωi,0 and the Hubble parameter H0, through the Friedmann

equation (2.37):

H2 = H2
0

[
(Ωγ,0 + Ων,0) a−4 + (Ωb,0 + Ωdm,0) a−3 + Ωk,0a

−2 + ΩX,0a
−1 + ΩΛ,0

]
,

(3.1)

From these parameters the radiation contribution is accurately measured, for

instance by the WMAP satellite, corresponding to Ωγ,0 = 2.469 × 10−5h−2 for
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els; with various combinations of matter Ωm,0 and dark energy in the form of a
cosmological constant ΩΛ,0.

Tcmb = 2.725K. Similarly for neutrinos, while taken as relativistic, they can be

related to the photon density through (2.23). However, variations of the rest of

the parameters imprint different signatures on the background history and evolu-

tion of perturbations, observed through the CMB spectrum as it is illustrated in

Figure 3.1. We observe that the first peak (and the most prominent, at l ≈ 200)

is particularly related to the spatial geometry Ωk,0; the relative heights of the in-

termediate peaks probe the baryon density; the largest scales are mainly affected

by the dark energy component.

These base parameters also play a key role on measurements of the distance

modulus µ, through the luminosity distance (2.50). Figure 3.2 shows the the-

oretical values of the distance modulus for three different models with various

combinations of Ωm,0 and ΩΛ,0. Note that objects appear to be further away

(dimmer) in a universe with cosmological constant than one dominated by only

matter today.

The existence of strong degeneracies amongst different combinations of pa-

rameters is also noticeable. In particular the well-known geometrical degeneracy

involving Ωm, ΩΛ and the curvature parameter Ωk = 1 − Ωm − ΩΛ. To reduce
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3. STATISTICS IN COSMOLOGY

degeneracies it is common to introduce a combination of the cosmological param-

eters such that they have orthogonal effects on the power spectrum [121]. For

instance, a standard parameterisation is based on the physical energy-densities of

cold dark matter Ωdmh
2, and baryons Ωbh

2, and the ratio of the sound horizon

to the angular diameter distance at decoupling time:

θ =
rs(adec)

DA(adec)
. (3.2)

There is an extra parameter that accounts for the reionisation history of the

universe, the optical depth to scattering τ (i.e. the probability that a given photon

scatters once), given by

τ = σT

∫ t0

tr

ne(t)dt, (3.3)

where σT is the Thompson cross-section and ne(t) is the electron number density

as a function of time.

Inflationary parameters

After the horizon exit, H and φ̇ have small variations during few e-folds. Thus,

the scalar (2.142) and tensor (2.144) spectra are nearly scale independent. The

standard assumption is therefore to parameterise each of the spectra in terms of

a power-law

PR(k) = As

(
k

k0

)ns−1

, (3.4)

PT (k) = At

(
k

k0

)nt

. (3.5)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt

parameters, for both scalar and tensor perturbations respectively; k0 denotes

an arbitrary scale at which the tilted spectrum pivots, usually fixed to k0 =

0.002 Mpc−1. A scale-invariant spectrum, called Harrison-Zel’dovich (HZ), has

constant variance on all length scales and it is characterised by ns = 1, nt = 0.

Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [138]. The spectrum of perturbations is said to be blue if

ns > 1 (more power in ultraviolet), and red if ns < 1 (more power in infrared).
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3.1 The Cosmological Parameters

The spectral indices, ns and nt, and the tensor-to-scalar ratio r can be expressed

in terms of the slow-roll parameters εv and ηv (2.70), as:

ns − 1 ' −6 εv(φ) + 2 ηv(φ), (3.6)

nt ' −2 εv(φ), (3.7)

r ' 16 εv(φ). (3.8)

These parameters are not completely independent each other, but the tensor

spectral index is proportional to the tensor-to-scalar ratio r = −8nt [53]. This

expression is considered as the consistency relation for slow-roll inflation. Any

single-field inflationary model can hence be described, to the lowest order in

slow-roll, in terms of three independent parameters: the amplitude of density

perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r.

Variations of the CMB T -spectrum over different values of ns are shown in the

left panel of Figure 3.3.

In addition to the temperature T and polarisation E spectra, produced by

scalar perturbations, there is also the B-mode polarisation only produced by ten-

sor perturbations. Therefore, measurements of B-modes are important tests for

the existence of primordial gravitational waves. Unfortunately, there is no obser-

vational evidence of tensor perturbations yet, and r is commonly set to zero. The

next generation of CMB polarisation experiments will substantially improve these

limits (see Section 3.2.2). Variations of the CBB tensor spectrum with respect to

the tensor-to-scalar ratio r are displayed in the right panel of Figure 3.3.

3.1.2 Nuisance parameters

We do not have particular interest on these type of parameters, however they may

influence the rest of the parameter-space constraints. These type of parameters

may be related to insufficiently constrained aspects of physics, or uncertainties

in the measuring process [228]. Therefore, considering their uncertainty is impor-

tant in order to obtain accurate error-estimates on the physical parameters we are

seeking to determine. Examples of nuisance parameters are, for instance, the bias
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factor in galaxy surveys b, calibrations and beams uncertainties, galactic fore-

grounds. The new ACT measurements (three seasons of data [214]) incorporate

nine parameters describing secondary emissions. Nuisance parameters also con-

trol the stretch α and colour β corrections on measurements of distance modulus

of SNe Type Ia [154].

3.1.3 Derived parameters

The standard set of parameters, introduced previously, provide an adequate de-

scription of the cosmological models in agreement with observational data. How-

ever, it is not unique and other parameterisations may be as good as this one.

Some parameterisations make use of knowledge about physics or sensitivity of

observations and are hence more naturally interpreted. In general we could have

used different parameters to describe the universe, those include: the age of the

universe, the present neutrino background temperature, the epoch of matter-

radiation equality, the reionisation epoch, the baryon to dark matter density

ratio, or some other combinations of parameters, i.e. the overall amplitude of the

CMB anisotropy exp(−2τ)As [228]. In the ΛCDM model, to ameliorate degenera-

cies, we use as base parameters the physical energy densities Ωdm,0h
2 and Ωb,0h

2,
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3.1 The Cosmological Parameters

Table 3.1: Candidate parameters used to describe models beyond the concordance
ΛCDM. The highlighted models are studied in detail throughout this work.

αRn Modifications to gravity

[or more complex theories]

ds̃2 Anisotropic universe

dα/dz, dG/dz Variations of fundamental constants

fNL Non-gaussianity

nrun Running of the scalar spectral index

kcut Large-scale cut-off in the spectrum

[or a more complex parameterisation of PR(k)]

r + 8nt Violation of the inflationary consistency relation

nt,run Running of the tensor spectral index

[or a more complex parameterisation of PT (k)]

Piso CDM isocurvature perturbations

Ωk,0 Spatial curvature

ΩX,0 Additional components

mdm Warm dark matter mass

[or scalar field dark matter]

mνi
Neutrino mass for species ‘i’

wDE Dark energy equation-of-state

[or a more complex parameterisation of w(z)]

ρα Polytropic equation of state

Γ Interacting fluids

and the ratio of the sound horizon to the angular diameter distance θ; we consider

as derived quantities the density parameters Ωi,0 and Hubble parameter H0.

3.1.4 Beyond the concordance ΛCDM

The best model in agreement with data, at present time, is given by the concor-

dance ΛCDM model. However, this model might not be the final one and several

extensions have already been implemented. A non-exhaustive list of candidates
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beyond the standard cosmological model is shown in Table 3.1. The definite an-

swer on how many parameters we must include or which set of parameters repre-

sents the most plausible will be given by high-quality cosmological observations

in the coming years. In the same table, we have highlighted the models studied

in detail throughout this work.

3.2 Observations

Rapid advance in the development of powerful observational-instruments has led

to the establishment of precision cosmology. In particular, experiments employed

to measure CMB anisotropies, luminosity distances and large-scale structure. In

this section, we highlight these type of experiments used to impose constraints

on the cosmological parameters.

3.2.1 Current observations

CMB experiments

A number of experiments over the past decade or so have been very successful in

measuring the anisotropies of the CMB. They include the Cosmic Background Ex-

plorer satellite [COBE; 160] as the pioneer of detecting the anisotropy. Nowadays

with highly-improved experiments it is possible to find accurate measurements of

the temperature and polarisation CMB spectrum from:

Satellite experiments:

• The Wilkinson Microwave Anisotropy Probe [WMAP; 120, 125], with CMB

T -spectrum measurements over the multipoles (2 < l < 1200). Recently the

WMAP collaboration has released the 9-year of observations [90].

Ground-based telescopes:

• The Background Imaging of Cosmic Extragalactic Polarization [BICEP;

42], probes intermediate scales (21 ≤ l ≤ 335).
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3.2 Observations

• The Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI (De-

gree Angular Scale Interferometer) [QUAD; 31], improve polarisation con-

straints, whose primary aim is high resolution measurements (154 ≤ l ≤
2026) of the polarisation signals.

• The Cosmic Background Imager [CBI; 215], constrains the CMB spectrum

in the range (300 ≤ l ≤ 1700).

• The Atacama Cosmology Telescope [ACT; 64], observes the small angle

CMB T -spectrum from l= 300 to l=10000, and recently released the three

seasons of data [214].

• The South Pole Telescope [SPT; 115], with CMB T -measurements between

(650 < l < 9500), and recent improved data from the 2500-square-degree

SPT-SZ survey [223].

Ballon-borne experiments:

• Balloon Observations Of Millimetric Extragalactic Radiation AND Geo-

physics [BOOMERanG; 114], measures CMB temperature fluctuations over

the multipole range 50 ≤ l ≤ 1500.

Figure 3.4 summarises the current status of some experiments constraining the

temperature (TT ), polarisation (EE) and cross-correlation (T -E) CMB power

spectra. In particular the CMB T -power spectrum is now well-constrained over a

wide range of scales. For example, WMAP and BICEP observations provide good

constraints on the late-time ISW effect arising at the largest scales on the first

three acoustic peaks, whilst ACT and SPT data accurately measure the power of

higher acoustic peaks and damping tail. Intermediate scales are well constrained

by QUAD and CBI experiments, and the overlapping of all of them. In addition

to T,E and T -E CMB spectra, Figure 3.5 shows the theoretical B-mode spec-

trum predicted from a power-law parameterisation, with r = 0.1, along with 1σ

constraints obtained from current observations: WMAP, BICEP and QUAD.

At this point it is worthwhile mentioning the existence of an intrinsic uncer-

tainty in the cosmological measurements. This limitation comes from the fact
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Figure 3.4: Current status of temperature (TT ), polarisation (EE) and cross-
correlation (T -E) measurements of the CMB power spectra, by various observa-
tional probes.

that we have to do statistics with only one universe. For a given multipole l, we

expect to have a variance, called the cosmic variance, of the Cl’s given by

(∆Cl)
2 =

2

2l + 1
C2
l . (3.9)

In real experiments, the error is increased due to the limited sky coverage by f−1
sky.

CMB measurements by themselves cannot, however, place strong constraints

on all the parameters because the existence of parameter degeneracies, such as the

τ−As and the geometrical degeneracy. Nevertheless, when CMB observations are

combined with other cosmological probes, they together increase the constraining

power and considerably weaken degeneracies.
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Figure 3.5: WMAP, BICEP and QUaD constraints for the B-mode power spec-
trum. The solid line represents the theoretical prediction of a r = 0.1.

Supernovae observations

Throughout the past two decades supernovae observations have provided decisive

evidence that the present expansion of the universe is accelerating. In particular

studies of Type Ia supernovae as standard candles: they have the same intrinsic

magnitude with high accuracy, up to a rescaling factor, e.g. Perlmutter et al.

[180], Riess et al. [193]. Hence, the current acceleration suggests the existence of

an exotic component or alternative theories which would produce such an effect,

as we will see in Chapters 7 and 8. Branch and Tammann [25] provides a brief

introduction to Type Ia supernovae (SNe Ia) as standard candles, and Leibundgut

[130] shows their use in cosmology. Some samples of supernovae Type Ia worth

mentioning include:

• The Sloan Digital Sky Survey-II [SDSS-II; 76], discovered and measured

multi-band lightcurves for 327 spectroscopically confirmed Type Ia super-

novae in the redshift range 0.05 < z < 0.35.

• The Equation of State: SupErNovae trace Cosmic Expansion program

[ESSENCE; 163], discovered and analysed 60 Type Ia supernovae over the

redshift interval 0.15 < z < 0.70,

• The Supernova Legacy Survey 3-year sample [SNLS; 224], presented 252

high redshift Type Ia supernovae (0.15 < z < 1.1).
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Figure 3.6: Current status of measurements of the Hubble diagram of Type Ia
supernovae. Reprinted from the Union 2.1 compilation [225].

• The Hubble Space Telescope [HST; 191], discovered 21 Type Ia supernovae

at z ≥ 1.

• Recently the compilation of data from all the above, namely the ‘Union’

[122], ‘Union 2’ [8] and ‘Union 2.1’ [225].

Supernovae measurements can be plotted on a Hubble diagram with distance

modulus vs. redshift (as seen in Figure 3.6), and then be used to fit the best

cosmological parameters, for instance those shown in Figure 3.2.

LSS measurements

The matter power spectrum is nowadays one of the most important measures of

large-scale structure. Many observations have been made to infer the spectrum:

• The sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky

Survey Seventh Data Release (DR7) [190], provides measurements on the

matter spectrum between 0.02 < k < 0.19Mpc−1. Nowadays with improved

measurements, one has the ninth data released (DR9) of the SDSS-III [2].

• Measurements of the transmitted flux in the Lyα forest probe the smallest

scales in the matter power spectrum [161].

An illustration of the matter power spectrum of density fluctuations is shown

in Figure 3.7 (see [91] and references therein).
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
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Friday, 15 February 2013

Figure 3.7: Current status of the perturbation power spectrum as measured by
different experiments. Figure reproduced from [91].

3.2.2 Future surveys

An impressive array of ambitious projects have been implemented, or are un-

derway, to provide high resolution measurements of the physical properties of

the universe, and hence the search for possible signatures of new cosmology. The

Planck satellite [185] will improve measurements on the E and B polarisation

modes. Along with Planck satellite there will be several experiments aiming to

provide measurements of small-scale fluctuations and polarisations, such as the E

and B EXperiment [EBEX; 173], Q-U-I JOint TEnerife CMB experiment [QUI-

JOTE; 196] and Spider [54]. Besides CMB experiments, the Euclid satellite [70]

will explore the expansion history of the universe and the evolution of cosmic

structures over a very large fraction of the sky. The Dark Energy Survey [DES;

226] is designed to probe the origin of the accelerating universe and help uncover

the nature of dark energy.

Previously we have shown current constraints of the temperature and polar-

isation CMB spectra. Here, we aim to explore future constraints coming from

Planck satellite and CMB-Pol experiments. Performance assumptions for Planck

and CMB-Pol are taken from [185] and [16]. In order to do this we need to

simulate these experiments by generating mock data of the Ĉl
XY

’s from a χ2
2l+1
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Figure 3.8: Polarisation noise power spectra of forthcoming experiments. Note
that these curves include uncertainties associated with the instrumental beam. The
red line shows the B-mode power spectrum for the standard inflationary model with
r = 0.1.

distribution with variances [187]:

(∆ĈXX
l )2 =

2

(2l + 1)fsky

(
CXX
l +NXX

l

)2
, (3.10)

(∆ĈTE
l )2 =

2

(2l + 1)fsky

[(
CTE
l

)2
+
(
CTT
l +NTT

l

) (
CEE
l +NEE

l

)]
,(3.11)

where X = T,E and B label the temperature and polarisations; fsky is the

fraction of the observed sky. The CXY
l ’s represent the theoretical spectra and

NXY
l the instrumental noise spectra for each experiment. In experiments with

multiple frequency channels c, the noise spectrum is approximated [24] by

NX
l =

(∑
c

1

NX
l,c

)−1

, (3.12)

where the noise spectrum of an individual frequency channel, assuming a Gaussian

beam, is

NX
l,c = (σpix θfwhm)2 exp

[
l(l + 1)

θ2
fwhm

8 ln 2

]
δXY . (3.13)

The pixel noise from temperature and polarisation maps are considered as uncor-

related. The noise per pixel σXpix (and σPpix =
√

2σTpix) depends on the instrumental
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parameters; θfwhm is the full width at half maximum (FHWM) of the Gaussian

beam.

For the Planck experiment, we include three channels with frequencies (100 GHz,

143 GHz, 217 GHz) and noise levels per beam (σTpix)2= (46.25 µK2, 36 µK2,

171 µK2). The FHWM of the three channels are θfwhm =(9.5, 7.1, 5.0) arc-minute.

These figures are taken from the values given in [185]. We combine three channels

for the CMBPol experiment [16] with frequencies (100 GHz, 150 GHz, 220 GHz),

noise levels (σTpix)2 = (729 nK2, 676 nK2, 1600 nK2) and θfwhm = (8, 5, 3.5) arc-

minute. Sky coverages of fsky = 0.65, 0.8 are respectively assumed and integration

time of 14 months. In Figure 3.8, we show the noise levels for these experiments as

a function of multipole number l. The blue line corresponds to the B-mode power

spectrum using the standard power-law parameterisation with r = 0.1. The lensed

CB
l is also shown in the same figure, which can be treated as a part of the total

noise power spectrum NB
l as well as the instrumental noise power spectra [181].

For more information of the noise and beam profile of each frequency channel,

refer to [151].

3.3 Bayesian Analysis

Over the last decade or so, the vast amount of information coming from a wide

range of sources, including CMB, SNe and LSS, has increased amazingly. We

would like to translate this experimental/observational information into con-

straints of our model(s), summarised by the estimation of the cosmological pa-

rameters involved. The concordance ΛCDM model, previously described, depends

on a set of cosmological parameters shown in Section 3.1. A primary goal con-

cerning observational cosmology is to determine best-fit parameter values for a

given model, as well as to decide which model is in best-agreement with obser-

vational data. To do this we focus on Bayesian inference. Some excellent reviews

of Bayesian statistics applied to cosmology are given by Heavens [89], Liddle

[137], Liddle et al. [141], Trotta [228], Verde [237, 238], von Toussaint [242], and

the textbook for data analysis Sivia and Skilling [216].
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3.3.1 Parameter estimation

A Bayesian analysis provides a consistent approach to estimating the values

of the parameters Θ within a model M , which best describe the data D. The

method is based on the assignment of probabilities to the quantities of interest,

and then the manipulation of these probabilities given a series of rules, in which

Bayes’ theorem plays the main role [137]. Bayes’ theorem states that

P (Θ|D,M) =
P (D|Θ,M) P (Θ|M)

P (D|M)
. (3.14)

In this expression, the prior probability P(Θ|M) ≡ π represents what we thought

the probability of Θ was before considering the data. This probability is modi-

fied through the likelihood P(D|Θ,M) ≡ L. The posterior probability P(Θ|D,M)

represents the state of knowledge once we have taken the experimental data D

into account. The normalisation constant in the denominator is the marginal

likelihood or Bayesian evidence P(D|M) ≡ Z, as is normally called in cosmology.

Since this quantity is independent of the parameters Θ, it is commonly ignored

in parameter estimation but it takes the central role for model comparison.

The central step for parameter estimation is to construct the likelihood func-

tion L for the measurements, and then the exploration of the region around its

maximum value Lmax. A simple chi-squared function is often used χ2 = −2 lnL.

when the distributions are Gaussian. However, some current problems in cos-

mology present obstacles for carrying out this procedure straightforwardly (some

of them discussed by Liddle [137]). Fortunately, models of our interest can be

easily tackled by numerical techniques developed on statistical fields, in partic-

ular the methods known as Markov Chain Monte Carlo (MCMC). There have

been developed different codes employing MCMC techniques to carry out the

exploration of the cosmological parameter-space, for instance CosmoMC [133],

CosmoHammer [4], CMBEASY [62]. Although some of them use a simple

Metropolis-Hasting algorithm by default, nowadays improved algorithms have

been adapted to explore complex posterior probability distributions.
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Discriminating among models and determining which of them is the most

plausible given some data is a task for model comparison techniques, whose ap-

plication is discussed in the next section.

3.3.2 Model selection

There is nowadays a rich diversity of models trying to describe the vast amount

of cosmological information. Some of them might involve complex interactions

or introduce a high number of parameters, but provide just as good fit as the

standard ΛCDM model (see Table 3.1). So, how can we perform an objective

comparison between them and choose the appropriate model? The solution was

proposed by William of Occam: the simplest model which covers all the facts

ought to be preferred. That is, a complex model that explains the data slightly

better than a simple one should be penalised by the inclusion of extra parameters,

because this additional information reflects a lack of predictability in the model.

Moreover, if a model is too simple, it might not fit certain data equally well, then

it can be discarded [141, 228].

Many attempts have been performed to translate Occam’s razor into a math-

ematical language for model selection. Two major types have been used so far:

Bayesian evidence and Information criteria; where the latter one can be used as

an useful approximation when the Bayesian evidence cannot be computed.

Information criteria is based on some simplifying approximations to the

full Bayesian evidence. The method considers the best-fit values and attaches a

penalty term for more complex models:

• The Akaike Information criterion (AIC), introduced by Hirotugu Akaike

has the form

AIC ≡ −2 lnLmax + 2k, (3.15)

where the penalty term is induced by the number of free parameters k to

be estimated.

-65-



3. STATISTICS IN COSMOLOGY

• The Bayesian Information Criterion (BIC), was derived by Gideon E. Schwarz

and it is given by

BIC ≡ −2 lnLmax + k lnN, (3.16)

where N is the number of datapoints. It follows from a Gaussian approxi-

mation of the Bayesian evidence for a large number of samples.

• The Deviance Information Criterion (DIC), was proposed by David J Spiegel-

halter. It is a generalization of the AIC and BIC written as

DIC ≡ −2D̂KL + 2Cb, (3.17)

where the former term is the estimated KL divergence and the latter one is

the effective number of parameters.

An extended discussion of the different information criteria can be found in

[136, 141, 228].

Bayesian evidence. This is the primordial tool for the model selection we

focus on. It applies the same type of analysis as in parameter estimation, but

now at the level of models rather than parameters. The Bayesian evidence is the

key quantity to bear in mid as it balances the complexity of cosmological models

and then, naturally, incorporates Occam’s razor. It has been applied to a wide

diversity of cosmological contexts, see for example [93, 109, 113].

Let us consider several models M , each of them with prior probability P (M).

Bayes’ theorem for model selection is

P (M |D) =
P (D|M)P (M)

P (D)
. (3.18)

The left-hand side denotes the probability of the model given the data, which is

exactly what we are looking for in model selection. We need, therefore, to obtain

an expression that allows us to compute the Bayesian evidence in terms of the

information we already have. As we previously mentioned, the Bayesian evidence

is simply the normalisation constant of the posterior distribution expressed by

Z =

∫
L(D|Θ)π(Θ)dNΘ. (3.19)
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where N is the dimensionality of the parameter space. More explicitly, it is the

average likelihood weighted by the prior for a specific model choice:

Evidence =

∫
(Likelihood× Prior)dNΘ. (3.20)

A model containing wider regions of prior parameter-space along with higher like-

lihoods will have a high evidence and vice versa. Therefore, the Bayesian evidence

does provide a natural mechanism to balance the complexity of cosmological mod-

els and then, elegantly incorporates Occam’s razor.

When comparing two models, Mi and Mj, the important quantity to bear in

mind is the ratio of the posterior probabilities, or posterior odds, given by

P (Mi|D)

P (Mj|D)
=
Zi
Zj

P (Mi)

P (Mj)
, (3.21)

where P (Mi)/P (Mj) is the prior probability ratio for the two models, usually set

to unity. The ratio of two evidences Zi/Zj (or equivalently the difference in log

evidences lnZi − lnZj) is often termed the Bayes factor Bi,j:

Bi,j = ln
Zi
Zj . (3.22)

Then, the quantity Bi,j measures the relative probability of how well model i

may fit the data when is compared to model j. Jeffreys [112] provided a suitable

guideline scale on which we are able to make qualitative conclusions (see Table

3.2). In this work, we refer to positive (negative) values of Bi,j when the i model

being favoured (disfavoured) over model j.

The calculation of the integral in Equation (3.19) is a very computation-

ally demanding process, since it requires a multidimensional integration over the

likelihood and prior. For many years much progress has been made in the con-

struction of efficient algorithms to allow faster and more accurate computation of

the Bayesian evidence. Until recently, algorithms such as simulating annealing or

thermodynamic integration [27], required around 107 likelihood evaluations mak-

ing the procedure hardly treatable. A powerful algorithm was recently invented
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Table 3.2: Jeffreys guideline scale for evaluating the strength of evidence when
two models are compared.

|Bi,j| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

by Skilling [217], known as nested sampling algorithm, which has been proven to

be ten times more efficient than previous methods. The first computationally-

efficient code to compute the Bayesian evidence in cosmology, named CosmoN-

est, was implemented by Mukherjee et al. [170]. In this work we incorporate into

the CosmoMC software [133] a substantially improved and fully-parallelized ver-

sion of the nested sampling algorithm, called the Multinest algorithm, initially

proposed by Feroz & Hobson [73, 74]. The MultiNest algorithm increases the

sampling efficiency for calculating the evidence and allows one to obtain pos-

terior samples even from distributions with multiple modes and/or pronounced

degeneracies between parameters. There is also CosmoPMC which is based on

an adaptative importance sampling method called Population Monte Carlo [117].

For more complex models with high number of parameters, there also exist im-

proved codes to increase the speed of the whole process by employing, for instance,

neuronal networks: CosmoNet [15]. BAMBI is an algorithm that combines the

benefits of both the nested sampling and artificial neural networks [80].

3.3.3 Dataset consistency

Combining multiple datasets to obtain tight constraints on the cosmological pa-

rameters has been a very common practice. Marshall et al. [156] established a

test to quantify the consistency of different cosmological datasets analysed under

the same model (see also Hobson et al. [94]). The Bayesian consistency analysis

relies on partitioning the full combined dataset D into its constituent parts Di
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(i = 1, . . . , n), namely CMB, SNe, LSS data, so on, and analyses the model with

each dataset independently. The evidence ratio is defined as

R =
Pr(D|H)∏n
i=1 Pr(Di|H)

, (3.23)

where the hypothesis H denotes the model under study. This ratio compares the

probability that all the datasets were generated from a cosmological model char-

acterised by the same parameter values, with the probability that each dataset

was generated from an independent set of cosmological parameters. Thus, one

expects R > 1 if the datasets are all consistent, and R < 1 otherwise. The Bayes

factor for data sets is given by BR = lnR.

3.4 The concordance ΛCDM model

In this section, we make use of the theoretical (Section 3.1), Observational (Sec-

tion 3.2.1) and Statistical (Section 3.3) tools to examine the standard cosmological

model. The minimal form of the standard cosmological model, in agreement with

several independent observations, considers a FRW background, purely Gaussian

adiabatic scalar perturbations and neglect tensor contributions. It also assumes

a flat universe fill up with baryons, cold dark matter and a dark energy compo-

nent in the form of a cosmological constant Λ. The key aspects that describe the

standard model here, and throughout the work, are specified by:

- Theory/Parameters

Base parameters: the physical baryon and dark matter densities Ωb,0h
2 and Ωdm,0h

2,

100× the ratio of the sound horizon to angular diameter distance at last scatter-

ing surface θ, the optical depth at reionisation τ , the amplitude of the primordial

spectrum As and the spectral index ns defined at a pivot scale k0 = 0.002 Mpc−1.

Aside from the base parameters, recent observations include additional secondary

parameters: the Sunyaev-Zel’dovich (SZ) amplitude ASZ , the total Poisson power

Ap at l = 3000 and the amplitude of the clustered power Ac. The parameters,

along with the flat priors, are shown in Table 3.3.
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Parameters Description Prior range

Background

Ωb,0h
2 Physical baryon density [0.01, 0.03]

Ωdm,0h
2 Physical cold dark matter density [0.01, 0.3]

θ Ratio of the sound horizon to

the angular diameter distance [1, 1.1]

τ Reionization optical depth [0.01, 0.3]

Inflationary

log[1010As] Curvature perturbation amplitude [2.5, 4]

ns Spectral scalar index [0.5, 1.2]

Secondary

ASZ Sunyaev-Zel’dovich amplitude [0, 3]

Ac Total Poisson power [0, 20]

Ap Amplitude of the clustered power [0, 30]

Table 3.3: Parameter description along with the flat-uniform priors assumed on
the standard ΛCDM.

-Observations/Experiments:

To compute posterior probabilities for each model in the light of temperature

and polarisation measurements, we use WMAP 7-year data release [120] and the

ACT observations [64]. In addition to CMB data, we include distance measure-

ments of 557 Supernovae Type Ia from the Union 2 compilation [122]. We also

incorporate large-scale structure data from the SDSS-DR7 [190] power spectrum.

We consider baryon density information from BBN [33] and impose a Gaussian

prior on H0 using measurements from the HST [192]. This comprises our dataset

I. In addition to dataset I, we include recent results from QUaD [31] and BICEP

[42] experiments. Together these observations make up our dataset II.

-Analysis/Codes:

The computation of the CMB spectrum is perform by a modified version of the

CAMB code [134] to include any additional components and calculate the pre-

dicted power spectra of CMB anisotropies and matter perturbations. The explo-

ration of the parameter-space is carried out by using the CosmoMC software
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[133] with the addition of the Multinest algorithm [73]. The latter is included

to perform the calculation of the Bayesian evidence.

We have analysed a standard flat ΛCDM model and, for pedagogical pur-

poses, also the same model but with the addition of curvature, with priors Ωk,0 =

[−0.1, 0.1]. The top panel of Figure 3.9 shows 1D marginalised posterior distri-

butions of the base and some relevant derived parameters, for both models: flat

(red) and non-flat (black) ΛCDM. At the top of the same figure, we have in-

cluded the Bayes factor comparing both of them. For the non-flat model, we

notice that the marginalised posteriors of Ωdm,0h
2, H0 and the Age of the uni-

verse have broadened due to correlations created by the inclusion of Ωk,0. These

correlations can be observed in the 2D marginalised posterior distribution shown

in the bottom panel of Figure 3.9. The constraints on the cosmological parame-

ters are displayed in Table 3.4 along with 1σ confidence levels. In this Table, both

models assume the presence of ΛCDM with a scalar power spectrum described by

a power-law and no tensor contributions. The first set of rows show the base pa-

rameters whereas the second set some derived parameters. Current cosmological

observations provide, in general terms, a strong support for a nearly-flat accel-

erating universe dominated by 72% of dark energy in the form of a cosmological

constant, 24% of non-baryonic dark matter and 4% of baryon contributions; the

primordial spectrum is red (ns < 1) with the Harrison-Zel’dovich excluded with

high confidence level. On the other hand, the Bayes factor between these two

models, BΛ,Λ+Ωk
= +1.90± 0.35, indicates a significant preference for a flat uni-

verse, according to the Jeffreys guideline shown in Table 3.2. The last row of

Table 3.4 shows that both models are consistent with the full combined dataset I.

Throughout the rest of the chapters we incorporate features beyond the stan-

dard ΛCDM model in the search of a better description of cosmological obser-

vations. In Chapter 4, with the use of present data, we determine the structure

of the primordial scalar spectrum by implementing an optimal model-free recon-

struction. Our aim is to consider models that slightly deviate from the simple

power-law form. Then, in Chapter 5, we incorporate tensor contributions to the
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Table 3.4: The constraints on the cosmological parameters using our dataset II.
We report the mean of the marginalised posterior distribution and 1σ confidence
levels. The Bayes factor for models BΛ,Λ+Ωk

, and for datasets BR are also included.

Description Flat ΛCDM Non-flat ΛCDM

Ωb,0h
2 0.02206± 0.00042 0.0221± 0.00043

Ωdm,0h
2 0.1130± 0.0028 0.112± 0.0041

Base θ 1.039± 0.0019 1.039± 0.0020

parameters τ 0.082± 0.013 0.083± 0.014

ns 0.956± 0.010 0.957± 0.011

log[1010As] 3.21± 0.035 3.21± 0.039

Ωk,0 - −0.0022± 0.0058

Ωm,0 0.282± 0.015 0.285± 0.018

Derived ΩΛ,0 0.717± 0.015 0.717± 0.016

parameters H0 69.2± 1.27 68.7± 2.13

Age(Gyrs) 13.84± 0.086 13.93± 0.27

−2 lnLmax 8240.46 8240.80

Bayes factor BΛ,Λ+Ωk
+1.6± 0.4 -

Dataset consistency BR +5.06± 0.4 +5.07± 0.4

analysis and present current and future constraints on the scalar spectrum. Chap-

ter 6 explores the possibility of a dynamical behaviour of dark energy. Here, the

dark energy equation-of-state wde(z) is modelled as a linear interpolation between

a set of ‘nodes’ with varying amplitudes and redshifts, similarly to the approach

used in Chapter 4. In the search of mechanisms or candidates to explain the mild

time-dependence of wde(z), in Chapter 7 we remain focussed on the ΛCDM model

but now include a second dark energy component ΩX with equation-of-state wX .

Finally, in Chapter 8 the Einstein-Hilbert Lagrangian is considered as a limit case

of a more general form of it, namely Modified Gravity. We explore these models

as an alternative to the dark energy component. The summary of the work done

throughout this dissertation is sketched in Figure 3.10.
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Bk,Λ = −1.90± 0.35
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Figure 3.9: Top: 1D marginalised posterior distributions on the standard ΛCDM
parameters using current cosmological observations; for flat (red) and non-flat
(black) ΛCDM models. Bottom: 2D marginalised posterior distributions of non-flat
ΛCDM parameters; constraints are plotted with 1σ and 2σ confidence contours.
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Figure 3.10: Summary of the work performed throughout this dissertation. The
top panel of the Figure displays the features beyond the concordance ΛCDM model
considered through the following chapters.
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Chapter 4
Scalar Power spectrum

Inflationary models generically predict the initial power spectrum of scalar den-

sity fluctuations to be close to scale-invariant with just a slight scale dependence.

The simplest proposal for the shape of the spectrum is to assume a power-law

parameterisation (3.4) in terms of a spectral amplitude As and a spectral index

or tilt parameter ns. Although this form has been in good agreement with cos-

mological observations, recent analyses from the WMAP [120], and the ACT [64]

have confirmed that the scale invariant (ns = 1) spectrum is now excluded at

3σ C.L. Similar results are obtained when measurements from the SPT [115] in

combination with the WMAP data are considered. It has also been shown that

if a running of the spectral index is taken into account, allowing deviations from

the power-law spectrum, WMAP+ ACT and WMAP+ SPT data show a pref-

erence for a negative running value at 1.8σ C.L. Thus, consideration of models

that slightly deviate from the simple power-law might be required. There have

been several alternatives proposed. Some physically motivated models include

an exponential large scale cut-off [68], discontinuities in the early universe from

phase transitions [18], closed universe inflation [126], models in which the power

spectrum drops to zero below some cut-off scale [30]. Some use observational data

to constrain an a priori parameterisation or attempt a direct reconstruction us-

ing, for instance, wavelets [169], deconvolution methods [86, 107, 227], by binning

the spectrum into an arbitrary number of band powers [27, 28, 82, 91], Bayesian

reconstruction techniques [29], principle component analysis [81] or minimising
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the level of complexity needed via a cross-validation [178], amongst many others.

In this chapter, we are interested in selecting the preferred shape for the

primordial spectrum using the Bayesian evidence as an implementation of Oc-

cam’s razor. First, we determine the structure of the primordial power spectrum

using an optimal model-free reconstruction. Our approach considers possible de-

viations from the power-law parameterisation by modelling the spectrum as a

linear interpolation between a set of ‘nodes’ which can vary in both amplitude

and k-position. Within this analysis we have included phenomenological features

which might be relevant to the description of CMB observations, such as a large

scale cut-off, a broken spectrum and a spectrum with a possible turn-over at any

position in k-space. The reconstruction process is essentially the same binning

format used previously by a number of authors, however here we allow the data

to decide the level of complexity of the model – the number of nodes and their

optimum position – via the Bayesian evidence. Then, for comparison, we com-

pute the Bayesian evidence for a set of existing model proposals: a power-law

parameterisation including both tilt and running parameter, a modified power-

law spectrum to account for a drop off at large scales and the Lasenby & Doran

(LD) model based on a closed universe. Finally, for each model we compare its

Bayesian evidence and according to the Jeffreys guideline we select the best model

preferred by current data.

The base and secondary parameters used throughout this chapter, along with

their flat priors, are displayed in Section 3.4. Parameters describing the primordial

spectrum are mentioned in each section below. To constrain the parameter-space,

we use the dataset I shown in Section 3.4.

The chapter is organised as follows: in the next Section we carry out the

reconstruction for the primordial power spectrum, we then consider different ex-

isting parameterisations suggested to describe the form of the spectrum (Section

4.2). In a more elaborate way, we present the Lasenby and Doran model (Sec-

tion 4.3). We show the resulting parameter constraints and the evidence for each

worked model. Finally, in Section 4.4 we decide which model of the primordial
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scalar spectrum provides the best description for current observational data and

present some conclusions.

4.1 Power Spectrum Reconstruction

4.1.1 Node-based spectrum

First, to perform a reconstruction for the shape of the primordial spectrum, we pa-

rameterise PR(k) with a specific number of bins, logarithmically spaced in k, and

varying only each amplitude, denoted As,ki
. Throughout, we assume that most of

the current relevant information is encompassed within the scales kmin = 0.0001

Mpc−1 and kmax = 0.3 Mpc−1, where the combined WMAP+ACT data signifi-

cantly improves the parameter constraints. Outside of these boundaries we take

the spectrum to be constant with values equal to those at kmin and kmax respec-

tively. We allow variations in the spectral amplitudes with a conservative prior

As,ki
∈ [1, 50]× 10−10.

To model the spectrum between k-nodes, a linear interpolation is performed such

that the form of the power spectrum is described by

PR(k) =


As,kmin

k ≤ kmin

As,ki
k ∈ {ki}

As,kmax k ≥ kmax

(4.1)

and with linear interpolation for kmin ≤ ki < k < ki+1 ≤ kmax.

We start our reconstruction by considering the base model which is equivalent

to the Harrison-Zel’dovich (HZ) spectrum (ns = 1) where the spectral amplitude

PR(k) = As is the only parameter, see Figure 4.1. The next model, (b), allows for

two amplitudes located at kmin and kmax to vary independently, thus emulating a

tilted spectrum. We then add a third point (c) placed midway between the two

existing nodes in (b). This model mimics a degree of spectral running by allowing

slight variations in the interpolated slopes between the three nodes. Since these

amplitudes are independent of each other, however, there is no need to pick any
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(b) B2,1 = +2.93± 0.30
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(c) B3,1 = +2.75± 0.30
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(d) B4,1 = +0.67± 0.30
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Figure 4.1: Left: Reconstruction of the primordial scalar spectrum modelled as
piecewise linear between nodes with fixed wavenumber ki, along with mean am-
plitude values and their corresponding 1σ error bars. On large scales the power
spectrum is constrained by WMAP data, whereas at small scales ACT/LRG data
yield tight constraints up to k = 0.3 Mpc−1. Right: 1D marginalised posterior dis-
tribution of the amplitudes Ai at each bin in each reconstruction. The top label in
each panel denotes the associated Bayes factor respect to the base model (HZ) (a).
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4.1 Power Spectrum Reconstruction

particular pivot point as in the case of power-law parameterisation, hence pro-

viding more freedom in the shape of the spectrum. The presence of a turn-over in

the global structure of the resultant spectrum, shown in Figure 4.1 (c), points to

some deviation from a simple tilt. We might continue adding nodes in this fashion

until some arbitrary accuracy of model fit is achieved, but always bearing in mind

that the inclusion of new unnecessary nodes is penalised through the Bayesian

evidence. We, then consider a fourth stage where the k-space is logarithmically

split into three equally spaced regions, (d). At small scales the shape of the power

spectrum is well constrained with tight error bars on each node, whereas on large

scales the error bars tell us there is still room for new features (within the limited

amount of information due to cosmic variance (3.9)). Notice the increased error

bars due to the addition of an arbitrary number of band-powers and correlations

created between them. We also observe the evidence has dropped for four k-nodes,

therefore this stage seems to be a reasonable point to stop adding parameters in

the reconstruction process. Figure 4.1 illustrates the corresponding form of the

reconstructed spectra from the mean posterior estimates (with 1σ error bars on

its corresponding amplitudes), together with 1D marginalised posterior distribu-

tion for the amplitude at each node and for each reconstruction. In each model

we include the Bayes factor compared to the base model (HZ).

The reconstructed spectra are assessed according to the Jeffreys guideline

shown in Table 3.2. The Bayesian evidence between the base model and the two-

node model B2,1 = +2.93 ± 0.30 points out that the HZ is strongly disfavoured

when compared to a tilted spectrum, in agreement with WMAP/ACT [64] re-

sults. The addition of complexity in the third stage provides more flexibility in

the shape of the reconstructed spectrum. The evidence between the two-node

and three-node model, B2,3 = +0.18 ± 0.30, is too small to draw any decisive

conclusion, though the evidence marginally prefers the simple tilted spectrum.

Although the reconstructed shape of the spectrum in the fourth stage is similar

to the one obtained in the second stage, the four k-node model is penalised be-

cause of the inclusion of unnecessary information. Thus, the peak of the evidence

at model (b) shows that the optimal reconstruction contains, surprisingly, just

two nodes, as is shown in Figure 4.1. Therefore, according to this reconstruction
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process, parameterisations such as the HZ and those containing more than three

k-nodes are hence disfavoured by current observations. At this point of the anal-

ysis, with fixed k-node positions, our results are consistent with those obtained

by [82], where according to the Akaike information criterion, the preferred model

is given by a two-node spectrum.

To extract the global structure of the spectrum we have carried out a recon-

struction process by placing nodes at particular positions in k-space. However,

to localise features in k-space, we may consider moving either back or forth the

internal k-nodes until we find their optimal position; we reconsider this option in

an improved method in the next Section.

4.1.2 Node-based spectrum II

In Section 4.1.1 we reconstructed the primordial spectrum using a standard bin-

ning process: fix k-node positions and vary only the amplitudes. We now consider

a reconstruction of the spectrum where the internal k-node positions vary, as well

as their amplitudes. 1

In order to look for deviations from the simple power-law model, we consider a

model with two fixed k-nodes at sufficiently separated positions [kmin, kmax], with

varying amplitudes [As,kmin
, As,kmax ], and place inside additional ‘nodes’ with the

freedom to move around in both position ki and amplitude As,ki
. Despite the

simplicity of this approach, it covers a large variety of shapes for the primordial

spectrum. The freedom of the position of the internal k-nodes allows us to localise

the best position for a turn-over (if any) and the amplitudes are able to describe

the global structure of the spectrum.

Analogously to Section 4.1.1, we have maintained the same priors for the

spectral amplitude As,ki
= [1, 50] × 10−10, whereas on the k-position we restrict

1A modied CAMB code version which allows a Node-based Parameterisation for the pri-
mordial power spectrum is a available at http://www.mrao.cam.ac.uk/software/.
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4.1 Power Spectrum Reconstruction

to the physical prior log ki = [log kmin, log kmax]. Hence, for this type of nodal-

reconstruction the spectrum is described by

PR(k) =


As,kmin

k ≤ kmin

As,ki
kmin < ki < ki+1 < kmax

As,kmax k ≥ kmax

(4.2)

and with linear interpolation for kmin ≤ ki ≤ kmax.

The internal nodes generalise the spectral running by allowing slight variations

in the interpolated slopes between external nodes. Figure 4.2 illustrates the re-

construction of the shape of the primordial spectrum from the mean posterior

estimates - with 1σ error bars on the amplitudes - (left), along with the 1D

marginalised posterior distributions on the parameters used to describe the spec-

trum (right). On large scales, the reconstructed shape of the one-internal-node

model (k1) resembles a similar spectrum to that obtained in Figure 4.1 (c),

but now the probability distribution suggests a preferred turn-over position lo-

calised at the largest scales. A similar turn-over has also been identified using

principle component analysis [81]. In the two and three-internal-nodes cases, it

is interesting to note that at small scales the marginalised posterior peaks at

scales where the combined WMAP/ACT constraints are improved; at these scales

(0.1 < k [Mpc−1] < 0.14) CMB data now considerably overlap with measurements

from SDSS DR7 LRG. This reduced power at small scales might be identified as

a feature produced from a phase transition in the early universe [18]. Both, the

two and three-internal models (middle and bottom panel of Figure 4.2), present

a similar behaviour on the reconstructed spectra, also seen on the marginalised

posterior distributions.

4.1.3 Cut-off and Broken spectra

For completeness, we consider the possible existence of a large-scale cut-off on

the primordial spectrum. A possible motivation to consider this model has been

discussed for instance by [48]. In order to perform the reconstruction for this

particular case we fix an extremal node at kmax with varying amplitude As,kmax
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(k2) Bk2,1 = +3.73± 0.30
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(k3) Bk3,1 = +3.49± 0.30
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Figure 4.2: Reconstruction of the primordial scalar spectrum letting one internal
k-node (top), two internal k-nodes (middle) and three internal k-nodes (bottom)
move freely in both amplitude Ai and position ki. The right panel corresponds to
the 1D marginalised posterior distribution of the amplitudes and k-node position
in each reconstruction. The top label in each panel denotes the associated Bayes
factor with respect to the base model (HZ) shown in Figure 4.1 (a).
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4.1 Power Spectrum Reconstruction

and let the cut-off scale kc vary across the prior [kmin, kmax] as well as its amplitude

As,c. The form of the spectrum is described as follows:

PR(k) =


0 k ≤ kc
As,c kc < k < kmax

As,max k ≥ kmax

(4.3)

and with linear interpolation for kc < k < kmax.

Also, we consider a broken spectrum which might have been produced from phase

transitions in the early universe. A similar broken spectrum, motivated by double

or multiple field inflation, has been considered by [18, 30]. This spectrum is ob-

tained by placing two nodes k1 and k2 within [kmin, kmax], and letting them move

freely in amplitude As,ki
and k-position, such that

PR(k) =

{
As,k1 k < k1

As,k2 k ≥ k2
(4.4)

and with linear interpolation for k1 < k2.

The reconstruction of the cut-off and broken primordial spectra along with 1σ

limits of the marginalised distributions are shown in the left panels of Figure 4.3.

Their corresponding posterior distribution in each parameter used to describe the

spectra are illustrated in the right panels. The obtained best-fit parameters for

the cut-off spectrum (top), show a preferred scale at which the power drops to

zero with an upper limit log10 kc < −3.45 at 95% C.L. Our constraints on kc also

show a significant likelihood at large scales, thereby disfavouring the presence of

an abrupt cut-off. With respect to the broken model (bottom), on the other hand,

the best fit parameters indeed predict a break in the primordial spectrum, located

approximately at log10 k ' −2.2. That could be an indicative of the existence of a

phase transition, and it is similarly obtained in the two and three-internal-nodes

models shown in Figure 4.2.

In this section we have considered three types of spectra with different fea-

tures: turn-over, large scale cut-off and broken spectrum (Figures 4.2-4.3). In

each figure we have included the Bayes factor compared to the base model (HZ).
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(kb) Bkb,1 = +2.38± 0.30
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Figure 4.3: Reconstruction of the large-scale cut-off spectrum (top) and broken
spectrum (bottom); their corresponding 1D marginalised posterior distribution of
the amplitudes Ai and node positions ki in each reconstruction (right). The top
label in each panel denotes the associated Bayes factor with respect to the base
model (HZ) shown in Figure 4.1 (a).

According to the Jeffreys guideline the one-internal-node spectrum, shown in the

top panel of Figure 4.2, is significantly preferred over the cut-off and broken spec-

trum models, Bk1,kc = +1.28± 0.30 and Bk1,kb
= +1.88± 0.30 respectively. Even

though the model with one-internal node is described by four parameters, when

it is compared to the Harrison-Zel’dovich spectrum (with only one parameter),

the Bayes factor Bk1,1 = +4.26 ± 0.30 shows that the presence of a turn-over is

strongly favoured by current cosmological information and significantly so when

compared to the tilted spectrum (with two parameters) Bk1,2 = +1.33± 0.30, see

Figure 4.1. Therefore, the presence of a turn-over in PR(k) plays an important
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4.2 Power Spectrum Parameterisation

role in explaining current observations. Notice that, in the bottom panel of Figure

4.2 the Bayesian evidence has dropped off, hence the reason we have stopped the

addition of nodes in the reconstruction process.

4.2 Power Spectrum Parameterisation

4.2.1 Power-law and running spectra

We have considered, so far, a PR(k) shape reconstructed directly from data.

For comparison we include the standard approach by assuming the power-law

parameterisation (3.4) in terms of a spectral amplitude As and a spectral index

or tilt parameter ns:

PR(k) = As

(
k

k0

)ns−1

, (4.5)

k0 denotes the pivot point, fixed to k0 = 0.002 Mpc−1. We assume the prior As =

[1, 50]×10−10 on the amplitude, together with the conservative prior ns = [0.7, 1.2]

on the spectral index. We find a mean value of ns = 0.963±0.011 which confirms

that our constraints are in good agreement with results from [64, 115, 120] and

Section 3.4. As a further extension we consider possible deviations from power-

law by allowing the spectral index to vary as a function of scale ns(k). Then the

primordial spectrum becomes

PR(k) = As

(
k

k0

)ns−1+ 1
2

ln
“

k
k0

”
nrun

, (4.6)

where nrun is termed the running parameter and is expected to be nrun ≈ 0 for

standard inflationary models. In order to minimise the correlation between ns

and nrun we have considered a pivot scale of k0 = 0.015 Mpc−1, as pointed out by

[51]. We use the same priors as above on As and ns, and the conservative prior

nrun = [−0.3, 0.3] on the running parameter. From the combined dataset we find

the marginalised posteriors show a preference for a negative running parameter

nrun = −0.026± 0.015 and ns = 0.968± 0.011 for the spectral index, as expected

by [64, 115, 120]. Figure 4.4 shows the marginalised posterior distributions for the

parameters used to describe PR(k) and the obtained spectrum from mean poste-

rior estimates of a simple tilted parameterisation with ns (left) and including the
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Figure 4.4: Reconstruction of the primordial scalar spectrum assuming a simple
tilted parameterisation with ns (top) and including the running parameter nrun

(bottom); the coloured region denotes 1σ error bands on the reconstruction. Right:
marginalised 1D and 2D probability posterior distributions for the power spectrum
parameters; 2D constraints are plotted with 1σ and 2σ confidence contours. The
top label in each panel denotes the associated Bayes factor with respect to the base
model (HZ) shown in Figure 4.1 (a).

running parameter nrun (right) respectively. In each panel we have included the

Bayes factor compared to the base model (HZ).

According to the Jeffreys guideline, present observations significantly prefer a

simple tilted model when compared to a model which includes a running param-

eter by a factor Bns,nrun = +1.19 ± 0.30. Similarly, a tilted spectrum is strongly

preferred when compared to the HZ model: Bns,1 = +3.25±0.30. We also confirm
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the agreement between the simple tilted model and the two-fixed-noded spec-

trum through its Bayes factor, shown in Figure 4.1 (b). An important point to

emphasise is that the simple tilt and running model present a significantly and

strongly disfavoured Bayes factor, Bns,k1 = −1.01± 0.30, Bnrun,k1 = −2.20± 0.30,

compared to the reconstructed one-internal-node spectrum shown in Figure 4.2.

Thus a simple power-law parameterisation seems to be not enough to describe

current cosmological observations, hence slight deviations of it should be taken

into account.

4.2.2 Modified Power-law spectrum

We have observed that models which present a turn-over at large scales are slightly

preferred by the evidence. Based on this observation, we suggest the following

phenomenological shape for the primordial power spectrum:

PR(k) = As

(
k
kv

)nv

k
kv

+ 1
. (4.7)

In this particular parameterisation, assuming nv < 1, the parameter kv determines

the transition between a standard power-law model with red tilt (k � kv) to a

blue tilt model (k � kv):

PR(k) = As


(
k
kv

)nv−1

k � kv,(
k
kv

)nv

k � kv,
(4.8)

where the prior on nv is similarly chosen to the spectral index ns in the power-law

parameterisation: nv = [0.7, 1.2]. We expect the constraints on the parameter kv

are mainly located on large scales, hence, for this extra-parameter we consider the

following flat prior ln kv = [−15,−5]. The reconstruction of the shape of this spec-

trum along with the posterior distribution in each parameter are shown in Figure

4.5. We observe the constraints for the new tilt-parameter nv = 0.955± 0.014 are

similar to those obtained from the power-law models, where the scale-invariant

spectrum is ruled out at a high confidence level and the spectrum exhibits a

red tilt at small scales. The marginalised posterior probability on kv shows the

existence of a blue-tilted spectrum on large scales ln kv < −8.1 at 95% C.L.
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(nv) Bnv,1 = +4.65± 0.30
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Figure 4.5: Reconstruction of the primordial scalar spectrum from mean posterior
estimates of the modified power-law parameterisation, along with 1σ error bands
(left). Right: marginalised 1D and 2D probability posterior distributions for the
power spectrum parameters; 2D constraints are plotted with 1σ and 2σ confidence
contours. The top label in each panel denotes the associated Bayes factor with
respect to the base model (HZ) shown in Figure 4.1 (a).

Hence, the global shape for this spectrum presents a slight running behaviour

with reduced power at both large and small scales, compared to the simple tilt

parameterisation.

The modified power-law parameterisation decisively rules out the HZ, since

the Bayes factor between the models is Bnv,1 = +4.65 ± 0.30. Moreover, even

though the modified power-law model has an extra parameter compared to the

simple power-law model, the data significantly prefer it with Bnv,ns = +1.40±0.30.

4.3 Lasenby & Doran spectrum

Assuming the cosmological constant is the origin of dark energy, Lasenby and

Doran [126] provided a construction for embedding closed-universe models in

a de Sitter background. As a consequence of this novel approach, a boundary

condition on the total available conformal time emerges. Remembering the total
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conformal time η (2.42), the LD model requires:

η ≡
∫ ∞

0

dt

R(t)
=
π

2
. (4.9)

For more details about the choice of the boundary condition, including how it

can be reinterpreted as an eigenvalue condition on the solution of a differential

equation, see Lasenby and Doran [126], Lasenby [127], Lasenby and Doran [128].

In order to understand some consequences of the new boundary condition we split

the history of the universe in two main contributions to the total conformal time:

matter (radiation and dust) and inflationary era. Hence, we want to compute the

conformal time ηM elapsed during the matter era and add it to that elapsed in

the inflationary era ηI, such that the boundary condition is satisfied:

ηI + ηM =
π

2
. (4.10)

It is found that this constraint leads to a ‘see-saw’ mechanism linking the pa-

rameters describing the current state of the universe with the initial conditions

[128].

Matter era

We have shown that the general description of the large-scale universe, based

on the FRW space-time, is governed by the Friedmann equations. If we assume

the matter density is made up of decoupled dust and radiation, the Friedmann

equations can be solved exactly and its solution is controlled by two arbitrary

constants α and β given by

α =
Ω2

m,0ΩΛ,0

(Ωm,0 + Ωr,0 + ΩΛ,0 − 1)3
, (4.11)

αβ =
Ωr,0ΩΛ,0

(Ωm,0 + Ωr,0 + ΩΛ,0 − 1)2
.

The total conformal time for this type of universe can be written in terms of the

dimensionless parameters α and β [126], as

ηM =

∫ ∞
0

dx

(βx4 + x3 − x2 + α)1/2
. (4.12)
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Inflationary era

The computation of the conformal time in the inflationary epoch is a more elab-

orate process. Let us consider a basic inflationary model where the particle re-

sponsible for this process is simply a real, time-dependent, homogeneous, free,

massive scalar field φ, described by the equations (2.65)-(2.67) with cosmological

constant:

Ḣ +H2 − Λ

3
+

4πG

3
(2φ̇2 −m2φ2) = 0, (4.13)

φ̈+ 3Hφ̇+m2φ = 0. (4.14)

For closed universe models, the scale factor is given explicitly by

1

R2
=

4πG

3
(φ̇2 +m2φ2)−H2 +

Λ

3
. (4.15)

In order to compute the conformal time ηI , it is necessary to seek out suitable

conditions before the onset of inflation and then solve the dynamics for the scalar

field encoded in equations (4.13) and (4.14). To do this, Lasenby and Doran [126]

developed formal series expansions out of the initial singularity, t = 0, in terms of

dimensionless variables u = t/tp and µ = m/mp, where the subscript ‘p’ denotes

a variable in Planck units. The series are given by

φ(u) =
1

lp

∞∑
n=0

φn(u) lnn(u), H(u) =
1

tp

∞∑
n=0

Hn(u) lnn(u), (4.16)

with

φ0 = b0 + b4u
4/3 − 118

√
3πb2

4

99
u8/3 − u2

1296π
(11
√

3πµ2 − 54
√

3πΛ

−216
√

3π3/2µ2b2
0 + 36πµ2b0),

φ1 = −
√

1

12π
− µ2

216π

(
−
√

3π + 36πb0

)
u2,

H0 =
1

3u
+

32
√

3π

27
b4u

1/3 + (
2µ2

81
+

Λ

3
+

4π

3
µ2b2

0 +
4
√

3π

27
µ2b0)u

−6656πb2
4

891
u5/3,

H1 = −udH0

du
− uH2

0 +
uΛ

3
− 8π u

3

(
dφ0

du

)2

− 16πφ1

3

dφ0

du

−8πφ2
1

3u
+

4πµ2uφ2
0

3
. (4.17)
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We observe that two new free parameters b0 and b4, appear in the series ex-

pansions. Together with the mass of the scalar field µ, they control the magnitude

of the field and how long the inflationary period lasts. In order to decide on the

priors we shall employ in our subsequent Bayesian analysis, it is worth pointing

out some features related with these new parameters.

• The amplitude of the perturbations is determined by the scalar field mass

µ. To match the observed level of CMB anisotropies, we shall need to set it

to be about

µ ∼ 10−6. (4.18)

• The number of e-foldings N is primarily determined by b0 and may be

approximated as

N ≈ 2πb2
0. (4.19)

Hence, to obtain realistic models we need b0 to be of order ∼ a few.

• The conformal time is estimated by

ηI ≈ 0.92

( |b4|
µ4/3

)1/2(
1

b2
0

)
. (4.20)

Employing the constraint (4.10), |b4|µ−4/3 should thus be around unity.

• The parameter b4 controls the initial curvature, as can be seen from (4.15):

R

lp
≈
(

2187

12544π

)1/4
u1/3

√−b4

. (4.21)

Therefore b4 must be negative. Making use of the rest of the parameters

and (4.20), |b4| should be around 10−9.

The restriction on the values for the model parameters together with the bound-

ary condition, severely limits the class of models allowed to reproduce current

cosmological observations.

Once we have found the initial conditions (4.17), it is straightforward to solve

numerically the dynamics of the scalar field φ and the expansion history H to
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Figure 4.6: Evolution of the conformal time ηI as a function of ln(u). We observe
that ηI saturates at a value of around 1.35 by the end of inflation. The parameters
used in this model are b0 = 2.47, b4 = −17.7× 10−9 and µ = 1.68× 10−6.

determine the evolution of the universe. As an example, let us consider the best-

fit values for the cosmological parameters given by WMAP+BAO+H0 [120], in

which case the conformal time elapsed during the matter epoch is ηM = 0.22.

In order to satisfy the boundary condition we should choose appropriate values

{b0, b4, µ} such that by the end of the inflationary period the achieve conformal

time is ηI ≈ 1.35, as shown on Figure 4.6. Then, the expected shape of the

primordial power spectrum P(k) for this model is directly computed from (2.142):

PR(k) =

[(
H

φ̇

)2(
H

2π

)2
]
k=RH

. (4.22)

As a consequence of the restriction of the total conformal time available in the

entire history of a closed Universe and the proper construction of the initial condi-

tions, the LD primordial spectrum has some worth noted features. The spectrum

derived from this model naturally incorporates an exponential cut-off on large

scales which might provide a possible explanation for the lower-than-expected

CMB power spectrum at low multipoles. On small scales, the relationship be-

tween P1/2
R (k) and ln k is linear, thus predicting a reduced power at large k as

compared to a simple tilted spectrum (for which lnP1/2
R (k) versus ln k is linear).

For further details about the LD model see, for instance [127, 128]. To compute

the LD spectrum we refer our analysis to [236]. We have also chosen the priors
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(nLD) BLD,1 = +4.94± 0.30
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Figure 4.7: Reconstruction of the primordial scalar spectrum assuming a Lasenby
& Doran model along with 1σ error bands (left). Right: marginalised 1D and 2D
probability posterior distributions for the power spectrum parameters; 2D con-
straints are plotted with 1σ and 2σ confidence contours. The top label on the
panel denotes the associated Bayes factor with respect to the base model (HZ)
shown in Figure 4.1 (a).

based on the same paper: Ωk,0 = [−0.05, 10−4], b0 = [1, 4], b4 = [−30,−1]× 10−9.

Figure 4.7 shows the reconstructed shape of the primordial spectrum along with

the posterior distribution in each additional parameter for this model; the con-

straints on the present Hubble parameter are H0 = 69.4±1.4, whereas the number

of e-folds is N = 50.6 ± 4.3 (see Figure 4.8) [236]. From the top label of Figure

4.7, we observe the LD model is significantly preferred over the simple power-law

parameterisation with a Bayes factor of BLD,ns = +1.69± 0.30 and decisive when

compared to the HZ spectrum: BLD,1 = +4.94± 0.30.

Indeed, the LD model has the largest evidence of all the models investigated,

followed closely by the modified power-law spectrum. It should be noted, however,

that the latter was constructed specifically to exhibit a turn-over on large scales,

having already found that the data prefer such a feature. A fairer comparison

would be between the LD model and the third most favoured model, namely the

one-internal-node linear-interpolation model described in Section 4.1.2, since both

of these models were proposed a priori. To this end, and as a check on our analy-
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Figure 4.8: Marginalised 1D probability distributions for the number of e-foldings
produced during inflation (top) and Hubble constant (bottom), obtained from the
LD model.

sis, we use the best-fit LD model (shown in Figure 4.7) as the input spectrum to

simulate an idealised CMB observation containing only cosmic-variance-limited

noise (3.9). Figure 4.9 (left panel) shows the resulting CMB temperature spec-

trum. We then analysed these simulated data using the one-internal-node linear

interpolation model to reconstruct the primordial power spectrum. Figure 4.9

(right panel) shows the resulting reconstruction (dotted line), which recovers well

the shape of the input LD spectrum (solid line), except on the very largest scales,

where there is little information in the simulated CMB data. Moreover, the recon-

structed spectrum has a similar shape to the one obtained from real data using

the one-internal-node model (see Figure 4.2). We may therefore understand the

higher evidence for the LD model spectrum as resulting from its similar quality

fit to the data, but requiring fewer free parameters than the one-internal-node

linear-interpolation model.

Finally, we note that, in the node-based reconstruction, the use of linear in-

terpolation between the nodes may seem crude. It is straightforward to generalise

the node-based approach to more sophisticated interpolation schemes, but this

may not always yield better results. In Appendix A, we illustrate this point by

reanalysing the simulated CMB data using a cubic spline interpolation through
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Figure 4.9: Reconstruction of the Lasenby & Doran primordial scalar spectrum
based on the binning format with linear interpolation described in Section 4.1.2.
We have assumed an idealised CMB spectrum with limitation only due to cosmic
variance (left). Right panel shows the reconstructed spectrum in the binning format
together with the LD input spectrum (solid line).

the nodes, thus allowing one to reconstruct a smooth shape for the primordial

spectrum, but one that is less satisfactory than that obtained using linear inter-

polation.

4.4 Discussion and Conclusions

In this chapter we have attempted to fit an optimal degree of structure for the

primordial power spectrum of curvature perturbations using Bayesian model se-

lection as our discriminating criterion. We have modelled the spectrum as a linear

interpolation between a set of ‘nodes’ with varying amplitude and k-position. We

have also explored different parameterisations of the primordial spectrum which

include: a power-law parameterisation with both tilt and running parameter, a

modified power-law spectrum and the Lasenby & Doran model.

All the considered models have in common the standard ΛCDM parameters:

Ωbh
2, ΩDMh

2, θ, τ , as well as the secondary parameters: ASZ , Ap, Ac. Thus, pri-

ors on these parameters remained the same in each model. The best-fit values

for these standard parameters are consistent with those obtained using the con-
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Figure 4.10: 1D marginalised posterior distributions for the primary (top) and
secondary (bottom) cosmological parameters, for each corresponding model listed
on the bottom-right box.

cordance 6-parameter model with power-law primordial spectrum (see Section

3.4). We show, in Figure 4.10, 1D marginalised posterior distributions for the

cosmological parameters of each of the preferred models. We observe the values

of the standard parameters remain well constrained despite the addition of ex-

tra freedom on the shape of the primordial spectrum, although the constraints

resulting from the HZ spectrum clearly differ from the others. Note also that the

constraints on the parameters corresponding to the LD model are slightly tighter

than the rest of the models.

We have considered wide-enough priors in our analysis, such that they do not

interfere with the inferred parameter values. We used priors on the amplitudes

of Ai = [1, 50] × 10−10 and on spectral indices of ns = nv = [0.7, 1.2], while the

parameters describing the k-space have physical priors restricted by [kmin, kmax].

We now compute the Bayesian evidence for a wider prior range of ns = nv =

[0.5, 1.5], b4 = [−50,−1]× 10−9, and also for ns = [0.7, 1.2] with narrow priors for
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Figure 4.11: Comparison of the primordial scalar power spectra for the preferred
models along with their Bayesian evidence. We also include the maximum likelihood
Lmax for a model with number of parameters Npar. Each Bayes factor is compared
respect to the one-node model (HZ).

nrun = [−0.1, 01], to illustrate the robustness of a model over small variations of

the prior range:

Bns,1 = +2.25± 0.30 (wide priors)

Bnv,1 = +4.24± 0.30 (wide priors)

BLD,1 = +4.47± 0.30 (wide priors)

Brun,1 = +2.85± 0.30 (narrow priors)

We observe that even when wider priors are considered, the HZ model is strongly

disfavoured when compared to nv and LD models. Similarly, the simple tilted and

running model are still significantly disfavoured.

To summarise the analysis, in Figure 4.11 we plot the reconstructed spectra

for the preferred selected models together with their corresponding Bayesian ev-

idence. It shows that the HZ spectrum is decisively excluded as a viable model

to describe PR(k). The preferred model given current observations is provided

by the LD model followed by a modified power-law version. We have found that

the power-law parameterisation, including either cases ns and ns +nrun, are both
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significantly disfavoured. The presence of a turn-over at large scales 1 and the

reduced power at small scales seem to provide an important contribution on

choosing the best-fit model through its Bayesian evidence.

1At the largest scales, the addition of tensor perturbations might considerably affect the
shape of the primordial spectrum. Hence, we consider this possibility in Chapter 5.
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Chapter 5
Tensor-to-Scalar ratio

Although the power-law assumption on the scalar spectrum provides reasonable

agreement with cosmological observations, some recent analyses show that if

a running of the scalar spectral-index, within the standard ΛCDM model, is

taken into account, there exists a preference for a negative running-value at 2.2σ

C.L. with WMAP7+QUaD. In the previous chapter we found, by using model-

independent techniques, that the existence of a turn-over in PR(k) is preferred.

This turn-over plays an important role in explaining current cosmological ob-

servations and cannot therefore be ignored when constraining the inflationary

parameters. In the slow-roll approximation, the shape of the spectrum of tensor

perturbations is

PT (k) =

[
16

π
H2

]
k=aH

, (5.1)

which depends on the form of the scalar spectrum and vice-versa, via the po-

tential of the single scalar-field. To place constraints on the amplitude of tensor

contributions, it is customary to define the tensor-to-scalar ratio as

r(k) ≡ PT (k)

PR(k)
= 64π

[
φ̇2

H2

]
k=aH

. (5.2)

The dependence of the scalar spectrum on the tensor spectrum is more evident in

the Lasenby & Doran model, where both spectra depend upon the same best-fit

parameters. In this chapter, by assuming a power-law parameterisation on the
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tensor spectrum, we show that the bending of the scalar spectrum is enhanced

due to the presence of a tensor component. We show that current constraints on

the tensor-to-scalar ratio (5.2) are broadened for non-power law PR(k) models.

We also discuss the constraints on r for a massive scalar-field in the Lasenby &

Doran model. Finally, we consider future experiments and present their expected

constraints on the inflationary parameters. For all the models, we compute the

Bayes factor in order to perform a model comparison.

The chapter is organised as follows: in Section 5.2 we present different models

suggested to describe the form of the scalar spectrum. We then show the result-

ing parameter constraints on the tensor-to-scalar ratio and the preferred form of

the power spectrum, using current cosmological observations. In the same sec-

tion we provide future constraints on r expected by Planck-like and CMB-Pol

experiments. We present some conclusions in Section 5.4.

5.1 Theoretical Framework

Even though the primary parameters in the standard ΛCDM model have already

been tightly constrained and have little impact on the B-mode spectrum, it is

worthwhile to perform a full parameter-space exploration to determine the tensor-

to-scalar ratio constraints in each model. We consider the tensor-to-scalar ratio

for each model i, as ri = PT (i)(k)/PR(i)(k). Hereafter we set ri = ri(k0) at a scale

of k0 = 0.015Mpc−1. A study of the appropriate scale to use is given by [52]. The

base and secondary parameters used throughout this chapter, along with their

flat priors, are displayed in Section 3.4. To constrain the parameter-space, we

consider dataset II introduced in Section 3.4, and additionally use Planck and

CMBPol realisations to show future expected constraints (see Section 3.2.2).
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5.2 Primordial power spectra constraints

5.2 Primordial power spectra constraints

5.2.1 Power-law parameterisation

Here, for simplicity, we assume the scalar and tensor spectra are described by

power law functions given by (3.4) and (3.5):

PR(k) = As

(
k

k0

)ns−1

, PT (k) = At

(
k

k0

)nt

, (5.3)

where the tensor amplitude At is related to tensor-to-scalar ratio rs = At/As.

For this parameterisation, we assume that rs(k0) and the tensor spectral index

nt satisfy the consistency relation for a single field slow-roll inflation rs = −8nt

[53]. The power-law parameterisation thus contains only three free parameters:

As, ns, and rs. For these parameters, we assume similar priors as we did in the

previous chapter: As = [1, 50]× 10−10 for the amplitude, a conservative prior for

the spectral index ns = [0.7, 1.2] and a tensor-to-scalar ratio prior of rs = [0, 1].

Figure 5.1 shows 1D and 2D marginalised posterior distributions of the scalar

spectrum index ns and the tensor-to-scalar ratio rs, using both current cosmolog-

ical observations (black line) and future experiments (red for Planck and green

for CMBPol). The bottom panel shows the limits imposed by current and fu-

ture experiments. For present observations: ns = 0.964 ± 0.011 and rs < 0.171

(mean values of 68% C.L. are quoted for two-tailed distributions, whilst one-tailed

distribution only the upper 95% C.L.). These results are in agreement with pre-

vious studies, i.e. [64, 115, 120]. With regards to future constraints, we have used

mean values obtained from current observations as the fiducial model (with fixed

rs = 0.1). We notice that 1σ error bars of the spectral index ns, shown in the

bottom panel of the same figure, reduce by about four times using a Planck-like

experiment and five times for a CMBPol experiment. Whereas Planck will be able

to distinguish tensor components with an accuracy of σr = 0.013, this is highly

improved by CMBPol data σr = 0.0009. If we consider only one channel for com-

parison, e.g. 100 GHz, the constraints on the tensor-to-scalar ratio are given by

σr = 0.02, in agreement with previous results [32]. The top-right panel illustrates
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Figure 5.1: Left panel: 1D and 2D probability posterior distributions for the
power spectra parameters, assuming a simple tilt parameterisation (ns); using both
current observations (black line) and future experiments (red for Planck and green
for CMBPol). 2D constraints are plotted with 1σ and 2σ confidence contours. Right
panel: Reconstruction of the scalar spectrum using present data; lighter regions
represent an improved fit.

the resulting shape of PR(k) corresponding to the posterior distributions using

present data.

5.2.2 Running scalar spectral-index

A further extension is possible by allowing the scalar spectral index to vary as

a function of scale, such that ns(k). This can be achieved by including a second
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order term in the expansion of the power spectrum (4.6):

PR(k) = As

(
k

k0

)ns−1+ 1
2

ln
“

k
k0

”
nrun

. (5.4)

We have kept the same tensor spectrum as in the simple power-law parameteri-

sation, with a tensor-to-scalar ratio rrun at a scale of k0 = 0.015 Mpc−1 to avoid

correlations amongst parameters [52]. We maintained the same priors for the in-

flationary parameters As, ns, and rrun and select a prior of the running parameter

of nrun = [−0.1, 0.1] as used by [175].

Figure 5.2 shows the 1D and 2D marginalised posterior distributions for the in-

flationary parameters, using current experiments (black line): ns = 0.985±0.017,

nrun = −0.043 ± 0.018 and rrun < 0.324; and Planck (red line) and CMBPol

(green line) realisations. The top label of the figure indicates the Bayes factor

using present observations, which in this case and throughout the paper is com-

pared with respect to the power-law parameterisation. We first note that in the

presence of a tensor component, the bending of the scalar spectrum is enhanced

through a larger running parameter 1. We also observe that using current exper-

iments a negative nrun parameter in preferred by more than 2.5σ C.L. Hence the

necessity to include a turn-over in the power spectrum. This result is confirmed

by noticing the Bayes factor is significantly favoured compared to the simple

power-law model, Bnrun,ns = +2.0± 0.3. Considerations of the running of running

of the spectral index are also being explored [188]. Notice that correlations cre-

ated by the inclusion of the running parameter broaden the constraints on the

tensor-to-scalar ratio by about 1.5 times. Future constraints are also broadened

compared to the power-law parameterisation. The summary of the constraints on

the inflationary parameters is shown in the bottom panel of Figure 5.2, and the

reconstruction of PR(k), using present data, in the right panel.

1The constraints of the running parameter without tensor components are nrun = −0.028±
0.014.
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Figure 5.2: Left panel: 1D and 2D probability posterior distributions for the infla-
tionary parameters, assuming a power-law with a running parameter (nrun); using
both current data (black line) and future experiments (red for Planck and green for
CMBPol). 2D constraints are plotted with 1σ and 2σ confidence contours. Right
panel: Reconstruction of the scalar spectrum using present data; lighter regions
represent an improved fit. The top label denotes the Bayes factor of the nrun-model
compared to the power-law ns-model, using current observations.

5.2.3 Model-independent reconstruction

We have seen that deviations from the simple power-law, by the introduction of

the running parameter, are relevant in explaining present data. In order to cor-

roborate this result and look for deviations from the power-law parameterisation,

we consider the model-independent reconstruction shown in Section 4.1.2. That

is, we place two fixed k-nodes at sufficiently separated positions [kmin, kmax], with
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varying amplitudes [As,kmin
, As,kmax ], and place inside additional ‘nodes’ with the

freedom to move around in both position ki and amplitude As,ki
. To maintain con-

tinuity between k-nodes, a linear interpolation is performed such that the form

of the power spectrum is described by

PR(k) =


As,kmin

k ≤ kmin

As,ki
kmin < ki < ki+1 < kmax

As,kmax k ≥ kmax

(5.5)

and with linear interpolation for kmin ≤ ki ≤ kmax.

We have restricted the model-independent reconstruction to two internal-nodes

which we consider are sufficient to provide an accurate description of the shape of

the power spectrum. The tensor spectrum is parameterised by a power-law form,

similarly to the one in Section 5.2.2. Here, the tensor-to-scalar ratio, given by

r2ki
= At/PR(k0), is computed at the scale k0 = 0.015 Mpc−1, and also satisfies

the consistency relation nt = −8r2ki
; with prior r2ki

= [0, 1].

The left panel of Figure 5.3 presents the 1D and 2D marginalised posterior

distributions for the parameters used in the model-independent reconstruction.

At the largest scales, we observe the lack of tight constraints on the amplitude

A1, mainly due to the cosmic variance and correlations with other parameters. At

smaller scales, the constraints on the amplitues (i.e. A2, A3 and A4) get tighter.

We notice the presence of a bi-modal distribution in the medium/small scales,

represented by k2, where the highest peak (k ∼ 0.01Mpc−1) matches the position

of the turn-over in the primordial spectrum, as seen in the top-right panel of

Figure 5.3. The other peak is located where the constraints seem to improve by

updated data sets: at the overlapping of WMAP/ACT observations (0.1 < k <

0.14) with LRG7 measurements. The reconstructed spectrum clearly presents

a turn-over, however with the bending at small scales less pronounced that in

the running model. Notice that the Bayes factor, shown in the top label of the

same figure, is significantly preferred over the simple tilt model, even though the

two-internal-node reconstruction contains four additional parameters; it is also

marginally preferred over the running model. Future experiments will be able to

pin-down accurately the shape of the primordial spectrum at medium and small
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Figure 5.3: Left panel: 1D and 2D probability posterior distributions for the
power spectrum parameters, assuming a two internal-node reconstruction (2ki);
using both current cosmological observations (black line) and future experiments
(red for Planck and green for CMBPol). 2D constraints are plotted with 1σ and
2σ confidence contours. Right panel: Reconstruction of the scalar spectrum using
present data; lighter regions represents an improved fit. Top label denotes the
Bayes factor of the 2ki-model compared to the power-law ns-model, using current
observations.

scales (k2), however at the largest scales (k1) the cosmic variance still dominates,

as seen in the 1D posterior distribution of A1. Current and future constraints of

the inflationary parameters are summarised in the bottom panel of Figure 5.3.
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Figure 5.4: Derived primordial power spectra, PR(k) and PT (k), from the Lasenby
& Doran model, using a different set of parameters of b0 and b4 (left and middle
panels); units of b4 are given in [10−10]. The right panel shows the tensor-to-scalar
ratio rLD = PT /PR.

5.2.4 Lasenby & Doran model

The Lasenby & Doran model is based on the restriction of the total conformal

time available in a closed universe [126]. At the largest scales, the predicted

scalar and tensor spectra naturally incorporate a drop-off without the need to

parameterise them, whilst, at small scales they mimic a slight running behaviour.

An important point to bear in mind is that in the LD model the functional

forms of H and φ̇ during inflation are expressed using just two parameters b0

and b4. These parameters describe the initial conditions, along with the standard

cosmological parameters, and therefore the primordial spectra generated by the

LD model are given in terms of

PR(k) = PR(k; b0, b4,Ωi,0, H0), PT (k) = PT (k; b0, b4,Ωi,0, H0). (5.6)

Notice that the tensor-to-scalar ratio rLD is a derived quantity in terms of the

cosmological parameters, H0, Ωi, and the initial-conditions parameters b0 and b4:

rLD(k) = rLD(k; b0, b4,Ωi,0, H0). (5.7)

That is, if we use values of b0 and b4 along with the cosmological parameters

there is no need to introduce additional variables to describe the tensor-to-scalar

ratio rLD. Figure 5.4 shows the primordial spectra, both scalar and tensor, for

a given combination of b0 and b4 parameters. In the right panel of this figure,
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we illustrate the tensor-to-scalar ratio and its degeneracy with a selection of

the parameters, for instance, the combination of {b0 = 3.2, b4 = −10 × 10−10}
or {b0 = 3.0, b4 = −12 × 10−10} provides the same tensor-to-scalar ratio, even

though their scalar and tensor spectra differ considerably. To compute the LD

spectra we refer to [234, 236]. We have also chosen the priors based on the same

paper: Ωk,0 = [−0.05, 10−4], b0 = [1, 4], b4 = [−30,−1] × 10−9. Figure 5.5 shows

1D and 2D marginalised posterior distributions of the parameters involved in

the description of the LD model. A novel result from the LD model is that its

constraints on the tensor-to-scalar ratio are different from zero: rLD = 0.11±0.024,

contrary to the standard power-law parameterisation. This happens mainly due

to the φ2-type potential assumed in the model. The Bayes factor of this model

compared to the simple-tilt model is shown in the top label of the same figure. The

low number of parameters and the reduced power at both large and small scales

make the LD model strongly favoured compared to the simple tilt and significantly

so compared to the running and the two-internal-node reconstruction. Future

experiments will provide an insight on discriminating amongst models, as we will

see in the next section.

5.3 Model Selection

Throughout the analysis, we have included the Bayes factor for each model and

found that the Lasenby & Doran model is the most preferred by current ob-

servations. Future experiments will be able to distinguish between models more

effectively. Let us assume for a moment that the LD spectra represent the true

model. We then use the LD spectra, with best-fit values obtained by using present

data (shown in the bottom panel of Figure 5.5), as the fiducial model to simulate

future CMB observations. We analyse this mock data to reconstruct the input

spectrum using the set of models aforementioned. Table 5.1 shows the Bayes

factor for the different models compared to the LD model. There is indeed a dis-

tinction between models, with the data clearly indicating a preference for the LD

model, used to generate the input-simulated data. Planck data will be able to

provide decisive conclusions on distinguishing the LD model from the simple-tilt

ns-model, Bns,LD = −6.3± 0.3, and a running nrun-model, Bnrun,LD = −6.5± 0.3,
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Figure 5.5: 1D and 2D probability posterior distributions for the power spectrum
parameters, assuming a Lasenby & Doran model (LD); using both current cosmo-
logical observations (black line) and future experiments (red for Planck and green
for CMBPol). 2D constraints are plotted with 1σ and 2σ confidence contours. The
top label denotes the associated Bayes factor with respect to the power-law ns

model using present data. ∗In this model, rLD is a derived parameter.

and strong preference when compared to the two-internal-node reconstruction 2ki-

model, B2ki,LD = −3.1± 0.3. There also will be a strong preference for the model

independent reconstruction over both the ns and nrun models: B2ki,ns = +3.2±0.3

and B2ki,nrun = +3.4±0.3, respectively. With regards to the CMBPol experiment,

this will definitely differentiate the LD spectrum from the rest of the spectra.

In contrast to the Planck experiment, the model-independent reconstruction for

CMBPol is now strongly favoured compared to the nrun model. CMBPol also pro-

vides a strong preference to differentiate the simple-tilt model ns over the running

model nrun: Bns,nrun = +2.5± 0.3. Therefore, future experiments will certainly be

able to differentiate between these models and pin down the right form of the
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Table 5.1: Model Selection. The input spectrum, given by the LD model, is recon-
structed using different models. We show the Bayes factor for each model i, Bi,LD,
compared to the LD model.

Planck CMBPol

LD 0.0± 0.3 0.0± 0.3

ns −6.3± 0.3 −13.0± 0.3

nrun −6.5± 0.3 −15.5± 0.3

2ki −3.1± 0.3 −10.2± 0.3

primordial spectrum.

5.4 Discussion and Conclusions

In this chapter we have performed a MCMC exploration of the full cosmolog-

ical parameter-space and showed current and future constraints on the infla-

tionary parameters, with particular attention to the tensor-to-scalar ratio. We

have considered models that deviate from the standard power-law in the scalar

power-spectrum: a power-law parameterisation with running behaviour and the

spectra predicted from the Lasenby & Doran model. By implementing a model-

independent reconstruction for PR(k), we have found that a turn-over in the

scalar spectrum is preferred to explain cosmological observations. The inclusion

of a tensor component enhances this turn-over, for instance, nrun = −0.043±0.018

compared to nrun = −0.028± 0.014 without tensors. A similar form of the scalar

spectrum has been previously obtained assuming different model-independent re-

constructions, and some of them with different data sets [81, 82, 234]. We have

assumed that a power-law parameterisation of PT (k) is sufficient to describe cur-

rent data. Even though we have not given the results for the standard cosmological

parameters Ωbh
2, Ωch

2, θ, τ , the best-fit values remained essentially unaffected

throughout the models, see Section 3.4. For all the models, we have computed the

Bayes factor and compared each to the simple power-law parameterisation. We
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Figure 5.6: 1-D marginalised posterior distribution of the tensor-to-scalar ratio
for the different models (left panel), along with their Bayesian evidence and number
of parameters of each model (right panel). The Bayes factor is compared to the
simple-tilt model (ns.)

found, using current observations, that the preferred model is given by the LD

model. The summary of the analysis, illustrated in Figure 5.6, displays how the

constraints on the tensor-to-scalar ratio are broadened for non-power law models.

We notice that the best-fit value of rrun is slighly offset from zero and coincides

with the peak of rLD. Throughout the models, the tensor-to-scalar ratio has been

computed at a particular scale k0 = 0.015 Mpc−1. However, to illustrate the ro-

bustness of the model selection, over a different choice of scale k0, we compute the

Bayesian evidence for all models at k0 = 0.002 Mpc−1. The results are essentially

unaffected and still show a preference for the LD model. The Bayesian evidece,

for each model, compared to the power-law parameterisation (ns) are as follow:

Brun,ns B2ki,ns BLD,ns

+1.8± 0.3 +2.29± 0.3 + 3.0± 0.3

With regards to future surveys, the Planck satellite will be able to differentiate

the running and tilt model from the LD model, but not decisively from the two-

internal-node reconstruction. The improvement using CMBPol selects the right

form of the primordial spectrum, as shown in Table 5.1.
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Chapter 6
Dark Energy equation-of-state

One of the most pressing goals of modern cosmology has been to explain the

late-time accelerated expansion of the universe [180, 193]. Considerable observa-

tional and theoretical effort has been focused on understanding this remarkable

phenomenon. It is often postulated that an exotic new source of stress-energy

with negative pressure may be responsible for the cosmic acceleration: such a

component is called dark energy (DE). The dynamical properties of dark energy

are normally summarised as a perfect fluid with (in general) a time-dependent

equation-of-state parameter w(z). The simplest proposal, namely a cosmological

constant Λ, is described by the redshift independent wΛ = −1. Alternative cosmo-

logical models that deviate from standard ΛCDM, but still lead to an accelerating

universe, include: K-essence, quintessence and non-minimally coupled scalar fields

[14, 189, 231, 239], braneworld models [152], modified gravity [13, 35, 99, 171, 220],

interacting dark energy [10, 45, 147], anisotropic universes [3, 155, 165, 232],

amongst many others [34, 38, 57, 83, 159, 183, 199, 255]. In the absence of

a fundamental and well-defined theory of dark energy, w(z) has been parame-

terised in a number of different ways, including: the CPL, JBP and FNT models

[41, 56, 111, 145], the Hannestad and Wetterich parameterisations [88, 246], poly-

nomial, logarithmic and oscillatory expansions [150, 208, 250], Kink models [19],

and quite a few others [212]. The a priori assumption of a specific model or the use

of particular parameterisations can, however, lead to misleading results regarding

the properties of the dark energy. Hence, some studies instead perform a direct,
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model-independent (‘free-form’) reconstruction of w(z) from observational data,

using, for instance, a principal component analysis [79, 104, 108, 209, 252, 253],

maximum entropy techniques [256], binning w(z) in redshift space [58, 129], non-

parametric approaches [96, 97, 205, 210, 211, 213] and several other techniques

[5, 6, 7, 43, 55, 103, 105, 146, 195, 201, 202, 203, 243, 244, 245].

In this chapter we explore the possible dynamical behaviour of the dark en-

ergy based on the most minimal a priori assumptions. Given current cosmological

observations and using the Bayesian evidence as an implementation of Occam’s

razor, we select the preferred shape of w(z). Our method considers possible devi-

ations from the cosmological constant by modelling w(z) as a linear interpolation

between a set of ‘nodes’ with varying w-values and redshifts (in the most general

case). The reconstruction process is essentially identical to the approach used in

Chapter 4 to recover the preferred shape of the primordial spectrum of curvature

perturbations P (k) [234]. For comparison, we also consider some existing models

that propose a parameterised functional form for w(z), namely the CPL, JBP

and FNT models. For each model we compute its evidence and, according to the

Jeffreys guidelines, we select the best model preferred by the data.

The base and secondary parameters used throughout this chapter, along with

their flat priors, are displayed in Section 3.4. To describe the overall shape of the

dark energy equation-of-state w(z) in our nodal reconstruction, we introduce a

set of amplitudes wzi
at determined positions zi. The CPL, JBP and FNT models

depend upon additional parameters. The assumed flat priors on these models are

discussed below. To carry out the exploration of the parameter space, we input

w(z) into a modied version of the CAMB code [134], which implements a pa-

rameterised post-Friedmann (PPF) presciption for the dark energy perturbations

[71]. To constrain the parameter-space, we consider the set of experiments I men-

tioned in Section 3.4.

The chapter is organised as follows: in the next section we define the model-

independent reconstruction and present existing parameterisations used by other

authors. The resulting parameter constraints and evidences for each model are
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then discussed. Finally, in Section 6.3, based on Jeffrey’s guideline, we decide

which model provides the best description for current observational data and

present some conclusions.

6.1 Dark Energy Reconstruction

6.1.1 Nodal reconstruction I

We first perform the reconstruction of w(z) by parameterising it as piecewise

linear between a set of nodes with variable amplitudes (wzi
-values), but with fixed,

equally-spaced redshifts. Throughout, we bear in mind that current information,

mainly coming from SN Ia, is encompassed between the present epoch zmin = 0

and zmax = 2. At higher redshifts there is no substantial information to place

strong constraints on dark energy, thus beyond z > 2 we assume w(z) to be

constant, with a value equal to that at zmax. At each node, we allow variations in

amplitudes wzi
with a conservative prior wzi

= [−2, 0]. Our description of w(z)

can be summarised as:

w(z) =


wzmin

z = 0
wzi

z ∈ {zi}
wzmax z ≥ 2

(6.1)

and with linear interpolation for 0 ≤ zi < z < zi+1 ≤ 2.

While the use of linear interpolation between nodes may seem crude, we have

shown in the Appendix A that the use of smoothed interpolation functions, such

as cubic splines, can lead to significant spurious features in the reconstruction,

thus leading to poor fits to observational data and also unrepresentative errors.

We perform all of our model comparisons with respect to the simplest explana-

tion of dark energy, namely the cosmological constant wΛ = −1. First, we consider

deviations of the ΛCDM model by letting the equation-of-state parameter vary

only in amplitude: w(z) = w0 = constant (see Figure 6.1(a)). The incorporation

of two or more parameters, as in models (b) and (c) respectively, allows us to

test the dark energy time-evolution. Figure 6.1 also includes the 1D marginalised
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Figure 6.1: Left: Reconstruction of the dark energy equation-of-state parameter
modelled as piecewise linear between nodes that may vary in amplitude wi but are
fixed in redshift z, showing the mean amplitude values and their corresponding 1σ
error bands. The colour-code shows ln(likelihood), where lighter regions represents
an improved fit. Right: 1D marginalised posterior distribution of the amplitudes
wi at each z-node (shown in the right-top corner), in each reconstruction. The
top label in each panel denotes the associated Bayes factor respect to the ΛCDM
model.
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posterior distribution for the corresponding amplitude at each node and for each

reconstruction. In the top label of each model we have included the Bayes factor

compared to the ΛCDM model. In model (b), we notice the overall shape of w(z)

includes a slight positive tilt and a narrow waist located at z ∼ 0.3. It is also

observed that at the present epoch w(z = 0) . −1 is slightly favoured, while at

higher redshifts w(z) & −1 is preferred, hence, the reconstructed w(z) exhibit a

crossing of the line w = −1. The crossing of the phantom divide line w = −1

(PDL), plays a key role in identifying the correct dark energy model [249]. If

future surveys confirm its existence, single scalar field theories (with minimal as-

sumptions) might be in serious problems as they cannot reproduce this essential

feature, and therefore alternative models should be considered, e.g. scalar-tensor

theories [23, 59], braneworld models [44, 200], f(R) gravity [13, 99, 166, 220]. To

continue with our reconstruction process, we then place a third point (c) midway

between the two existing nodes in (b). This model mimics a running behaviour by

allowing slight variations in the interpolated slopes between the three nodes. The

freedom in its shape, together with the very weak constraints at high redshifts,

lead to a w(z) with slight negative slope at early times, in contrast to model

(b). Furthermore the presence of a small bump in the resulting w(z) at z ∼ 1

(see Figure 6.1 (c)) might point to some weak departure from the cosmological

constant wΛ = −1.

We can continue this process of adding more nodes but always using the

Bayesian evidence to penalise any unnecessary inclusion of model parameters.

The inclusion of a fourth stage with z-space split into three equally spaced regions

is given by model (d). At low redshifts the shape of the equation of state is well

constrained with tight error bands on each node, whereas at high redshifts the

error bands again indicate the lack of sufficient data to provide strong constraints.

Notice also the increased error bands due to the addition of further nodes and

(anti-)correlations created between them: for instance, the posterior distribution

of the amplitude wzi
at z = 0 is broadened as the number of nodes is increased.

At this stage, the evidence has flattened off, and so it seems reasonable to stop

adding parameters in the reconstruction process at this point. The constraints

on the wzi
amplitudes used on each reconstruction are given by (for two-tailed
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distributions 68% C.L. are shown, whilst for one-tailed distributions the upper

95% C.L.):

(a) w0 = −1.02± 0.07,

(b) wz=0 = −1.09± 0.14, wz>2 = −0.83± 0.39,

(c) wz=0 = −1.14± 0.17, wz=1 = −0.73± 0.33, wz>2 < −0.65,

(d) wz=0 = −1.18± 0.20, wz=0.66 = −0.78± 0.30, wz=1.33 = −1.03± 0.53,

wz>2 < −0.62.

The models used in the reconstruction of w(z) are assessed according to the

Jeffreys guideline. The Bayes factor between the ΛCDM model and the one-

node model B1,Λ = −2.19 ± 0.35 points out that w(z) = w0 (where w0 is a free

constant), is strongly disfavoured when compared to the cosmological constant,

similarly, when two independent nodes are used B2,Λ = −2.34 ± 0.35. Thus, pa-

rameterisations that contain one or two parameters are not able to provide an

adequate description of the behaviour of w(z), and hence are strongly disfavoured

by current observations. The addition of nodes in the third and fourth stage pro-

vides more flexibility in the shape of the reconstructed w(z). Thus, the evidence

for these models shows an improvement, compared to the first and second mod-

els, indicating the possible presence of some features in the time evolution of the

equation-of-state parameter. Nonetheless, when they are compared to ΛCDM,

they are still marginally disfavoured: B3,Λ = −1.70±0.35 and B4,Λ = −1.57±0.35.

6.1.2 Nodal reconstruction II

We previously reconstructed w(z) by placing nodes at particular fixed positions in

z-space. However, to localise features, we now extend the analysis by also allowing

the z-position of each node to move freely (see e.g. Section 4.1.2). In particular,

we again fix two z-nodes at sufficiently separated positions zmin = 0 and zmax = 2,

but now place inside additional ‘nodes’ with the freedom to move around in both

position zi and amplitude wzi
. This method has the advantage that we do not

have to specify the number and location of nodes describing w(z); indeed, the

form of any deviation from flat w(z) can be mimicked through a change in the
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amplitudes and/or positions of the internal nodes. Also, the reduced number

of internal nodes avoids the creation of wiggles due to high (anti-)correlation

between nodes, which might lead to a misleading shape for w(z). We use the

same priors for the amplitudes wzi
= [−2, 0] as we adopted in Section 6.1.1.

Hence, for this type of nodal-reconstruction the equation of state is described by

w(z) =


wzmin

z = 0
wz1 0 < zi < zi+1 < 2
wzmax z ≥ 2

(6.2)

and with linear interpolation for 0 ≤ z1 < zi+1 ≤ 2.

Figure 6.2 illustrates the reconstruction of w(z) from the mean posterior estimates

for each node, with 1σ error bands on the amplitudes (left). Also plotted are

the 1D and 2D marginalised posterior distributions on the parameters used to

describe w(z) (right). The reconstructed shape for the two-internal-node model

(middle panel) resembles the form obtained in Figure 6.1(c), but now with a turn-

over shifted to earlier times. A similar turn-over has been found using principal

component analysis by [79, 209]. The narrow waist at z ∼ 0.3 is also noticeable,

where the SNe constraints seem to be tightest. For the one and three-internal-

nodes case (top and bottom panel of Figure 6.2), we observe w(z) has essentially

the same behaviour as in the two-internal-node model, being the preferred model.

Finally, a common feature throughout all the reconstructed equation of state w(z)

is observed: the presence of the crossing PDL within the range 0 < z < 0.5. The

constraints on the wzi
amplitudes used on each reconstruction are given by (for

two-tailed distributions 68% C.L. are shown, whilst for one-tailed distributions

the upper 95% C.L.):

(z1) wz=0 = −1.14± 0.18, w0<z<2 > −1.39± 0.35, wz>2 < −0.70,

(z2) wz=0 = −1.18± 0.26, w0<z<1 = −0.83± 0.29, w1<z<2 = −1.02± 0.52,

wz>2 < −0.63,

(z3) wz=0 = −1.07± 0.36, w0<z<0.66 = −0.98± 0.29,

w0.66<z<1.33 = −0.84± 0.47, w1.33<z<2 = −1.02± 0.55,

wz>2 < −0.63.
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Figure 6.2: Left: Reconstruction of the dark energy equation-of-state parameter
w(z) using one-internal-node (top) and two-internal z-nodes (bottom) that move
freely in both amplitude wi and redshift zi. Right: corresponds to the 1D and 2D
marginalised posterior distribution of the amplitudes and z-node positions in each
reconstruction. The colour-code indicates the ln(Likelihood), where lighter regions
represents an improved fit, and the top label in each panel denotes the associated
Bayes factor with respect to the ΛCDM model.
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The similar shape of the three models are in good agreement with their Bayes

factor: Bz2,z1 = +0.46 ± 0.35, Bz3,z2 = −0.14 ± 0.35. According to the Jeffreys

guideline, even though the two internal-node model contains more parameters, it

is significantly preferred over the models with one and two fixed-nodes, i.e. Bz2,2 =

+1.53 ± 0.35. However, when compared to the cosmological constant model the

Bayes factor is too small to draw any decisive conclusions: Bz2,Λ = −0.81± 0.35.

Thus we conclude that the internal-node models might be considered as viable

models to characterise the dark energy dynamics. As seen in Figure 6.2, the

Bayesian evidence has reached a plateau and thus we cease the addition of further

nodes.

6.2 Dark Energy Parameterisations

6.2.1 CPL and JBP parameterisations

In this section we examine some existing parameterised models for w(z) and

compare these to our nodal reconstructions. In particular, we consider the simple

parameterised description introduced by Chevallier-Polarski-Linder (CPL; [41,

145]), that has the functional form:

w(z) = w0 + wa
z

1 + z
, (6.3)

where the parameters w0 and wa are real numbers such that at the present epoch

w|z=0 = w0 and dw/dz|z=0 = −wa, and as we go back in time w(z � 1) ∼
w0 + wa. Thus, we limit the CPL parameters by the flat priors w0 = [−2, 0] and

wa = [−3, 2].

We also consider the parameterisation suggested by Jassal-Bagla-Padmanabhan

(JBP; [111]):

w(z) = w0 + wa
z

(1 + z)2
. (6.4)

In this model, the parameter w0 determines the properties of w(z) at both low

and high redshifts: w(z = 0) = w0 and w(z � 1) ∼ w0. To explore the parameter

space we consider the following flat priors on the JBP parameters: w0 = [−2, 0]
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Figure 6.3: Reconstruction of the dark energy equation of state w(z) assuming
the Chevallier-Polarski-Linder (top) and the Jassal-Bagla-Padmanabhan parame-
terisation (bottom), along with their corresponding 2D constraints with 1σ and
2σ confidence contours (right panel). The colour-code indicates the ln(Likelihood),
where lighter regions represents an improved fit; the top label in each panel denotes
the associated Bayes factor with respect to the ΛCDM model. Dotted lines indicate
the priors choice.

and wa = [−6, 6].

Figure 6.3 shows 2D joint constraints, with 1σ and 2σ confidence contours,

for the parameters used to describe the CPL and JBP models, and the resulting

shape of w(z) corresponding to the mean posterior estimates of w0 and wa. In

each panel we have included the Bayes factor compared to the ΛCDM model.

Both of the models are in good agreement with a simple cosmological constant.

The current constraints for the CPL and JBP parameters are essentially as we
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expected:

(CPL) w0 = −1.11± 0.17, wa = 0.34± 0.60,

(JBP) w0 = −1.21± 0.26, wa = 1.28± 1.62.

Given that the CPL and JBP parametererisations depend upon just two pa-

rameters, they seem to not posses enough freedom to capture local features of

w(z), i.e. the CPL model does not exhibit a turn-over, see Figure 6.3. This is

reflected in the large difference in the Bayesian evidence for this model com-

pared to that of the cosmological constant: BCPL,Λ = −2.84± 0.35 and BJBP,Λ =

−2.82± 0.35. In fact, the CPL equation of state looks similar to that obtained in

Figure 6.1 (b), confirming our results. An important point to emphasise is that,

for the chosen priors, BCPL,z2 = −2.03±0.35 and BJBP,z2 = −2.01±0.35, indicat-

ing that both models are strongly disfavoured in comparison to the internal-node

reconstruction, shown in Figure 6.2.

To illustrate the robustness of the model to small variations of the prior range,

we compute the Bayesian evidence using different sets of priors, shown in Table

6.1; the prior ranges are illustrated with dotted lines in Figure 6.3. The reader will

observe that even though the priors, in the first three choices, have been shrunk to

within the region of the 2σ contours, the Bayes factor still disfavours significantly

both the CPL and JBP parameterisations compared to the cosmological constant

and the two-internal-node reconstruction. With respect to the extremely small

prior (last row of Table 6.1), we notice that the JBP model does not contain the

cosmological constant w0 = −1. Its Bayes factor compared to the ΛCDM model

BJBP,Λ = −0.54 ± 0.35, shows that models with w(z = 0) . −1.1 might provide

a good description for the current state of the Universe.

6.2.2 FNT parameterisation

We have observed that two-parameter functions are not, in general, sufficient

to recover the evolution of the dark energy w(z), obtained previously in the

reconstruction process. As an alternative to the CPL and JBP functional form, we
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Table 6.1: Robustness of the CPL and JBP models over small variations of the
prior range. The associated Bayes factor in each model is compared with respect
to the ΛCDM model.

Prior BCPL,Λ Prior BJBP,Λ

w0, wa w0, wa

[-1.5,-0.7], [-3,2] −1.84± 0.35 [-1.8,-0.6], [-6,6] −2.35± 0.35

[2,0], [-0.5,1] −2.11± 0.35 [-2,0], [-1,4] −1.82± 0.35

[-1.5,-0.7], [-0.5,1] −1.39± 0.35 [-1.8,-0.6], [-1,4] −1.51± 0.35

[-1.3,-1], [0,1] −0.26± 0.35 [-1.4,-1.1], [0,3] −0.54± 0.35

consider a more general parameterisation introduced by Felice-Nesseris-Tsujikawa

(FNT, [56]), which allows fast transitions for the dark energy equation of state:

w(a) = wa + (w0 − wa)a
1/τ [1− (a/at)

1/τ ]

1− a−1/τ
t

, (6.5)

where a = 1/(1 + z), at > 0 and τ > 0. The parameter w0 determines the

w(a) properties at present time w0 = w(a = 1), whereas wa the asymptotic past

wa = w(a � 1). In this model, the equation of state w(a) has an extremum at

a∗ = at/2
τ with value

w(a∗) = wp +
1

4

(w0 − wa)a1/τ
t

1− a−1/τ
t

. (6.6)

Based on the assumptions given by [56], we explore the cosmological parameter-

space using the following flat priors: w0 = [−2, 0], wa = [−2, 0], at = [0, 1] and

τ = [0, 1], using a full Monte-Carlo exploration. We leave the analysis of the ro-

bustness of this model under small variations on the priors, for a future work.

In Figure 6.4 we plot 2D joint constraints, with 1σ and 2σ confidence con-

tours, for the parameters used to describe the FNT model, and its corresponding

reconstruction of w(z). We observe that the FNT model is in good agreement
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(FNT) BFNT,Λ = −1.68± 0.35
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Figure 6.4: Reconstruction of the dark energy equation of state w(z) assuming
the Felice-Nesseris-Tsujikawa paramterisation (left panel), along with their corre-
sponding 1D, and 2D constraints with 1σ and 2σ confidence contours (right panel).
The colour-code indicates the ln(Likelihood), where lighter regions represents an
improved fit; the top label in the panel denotes the associated Bayes factor with
respect to the ΛCDM model.

with a simple cosmological constant w(z) = −1, with current constraints:

(FNT) w0 = −1.19± 0.32, wa = −0.94± 0.15.

Given that the best-fit values of w0 and wa are very similar, the second term on the

left hand side of (6.6) is almost negligible. This results in essentially unconstrained

values for at and τ , and so wa becomes the dominant term in the dynamics of w(z).

We have found that the FNT model shares a similar feature common throughout

all the models: w(z = 0) . w(z � 1), in agreement with our previous results.

The best-fit form of w(z) presents a maximum value given by w(a∗) = −0.95

located at z∗ = 1/a∗ − 1 = 1.59. On the other hand, the top label of Figure 6.4

shows the Bayes factor compared to the ΛCDM model: BFNT,Λ = −1.68 ± 0.35.

That is, the FNT model improves on the Evidence computed from the CPL and

JBP models, however the inclusion of twice the number of parameters makes it

significantly disfavored when compared to the cosmological constant w(z) = −1,

and indistinguisable compared to our node-base reconstruction, i.e. BFNT,z2 =

−0.82± 0.35.
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6.3 Discussion and Conclusions

The major task for present and future dark energy surveys is to determine whether

dark energy is evolving in time. Using the latest cosmological datasets, we have

performed a Bayesian analysis to extract the general form of the dark energy

equation-of-state parameter, employing an optimal nodal reconstruction where

w(z) is interpolated linearly between a set of nodes with varying wzi
-values and

redshifts. We find our results to be generally consistent with the cosmological

constant scenario, however the dark energy does seem to exhibit a temporal evo-

lution, although very weak. Besides the cosmological constant, the preferred w(z)

has w . −1 at the present time and a small bump located at z ∼ 1.3, whereas

at redshifts z & 1.5 the accuracy of current data is not enough to place effec-

tive constraints on different parameterisations. It is also interesting to note the

presence of a narrow waist in many models, situated at z ∼ 0.3, which is where

the constraints on w(z) are tightest. A dominant feature throughout the recon-

struction is the presence of the crossing of the PDL w = −1, obtained within

the range 0 < z < 0.5. Within the GR context, this phantom crossing cannot

be produced by single (quintessence or phantom) scalar fields. Hence, if future

surveys confirm its evidence, multiple fields or additional interactions should be

taken into account to reproduce this important behaviour.

All the models considered share the set of primary cosmological parameters:

Ωbh
2, ΩDMh

2, θ, τ , ns, As, in addition to secondary parameters: ASZ , Ap, Ac. The

marginalised posterior distributions for these parameters are consistent with those

obtained using only the concordance ΛCDM model (see Section 3.4). In Figure

6.5, we plot 1D posterior distributions of the cosmological parameters for some

selected models. We observe that their values remain well constrained despite the

freedom in w(z). The only noticeable change is in the dark matter parameter,

where the ΛCDM model displays the tightest constraints. In the same figure we

include the corresponding Bayes factors, all of which are quoted relative to the

cosmological constant model. The preferred Bayesian description of the w(z) is

provided by the ΛCDM model, followed by the two-internal-node model z2, in-

troduced in this work. It is important to note that the CPL and JBP models,
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Figure 6.5: Left: 1D marginalised posterior distributions of the standard cos-
mological parameters, of each corresponding model listed in the right table. Right:
comparison of the Bayes factor Bi,Λ for some selected models with an extra-number
of parameters Npar. Each description is compared respect to the ΛCDM model.

each with two parameters, are not able to provide an adequate description for the

behaviour of w(z), and are hence strongly disfavoured using the priors chosen.

The FNT model with four parameters, from which two of them remained uncon-

strained, is significantly disfavoured. We stress that for the smallest prior range,

the Bayes factor for the JBP model (which does not include the case w0 = −1) is

indistinguishable from that of the ΛCDM model, therefore pointing to a possible

departure from the cosmological constant.
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Chapter 7
Missing Matter and double Dark

Energy

Even though the standard ΛCDM model provides a good fit to existing observa-

tions, there have been a large number of other exotic forms of matter proposed to

provide alternative explanations for the current accelerating universal expansion

[50, 66], including, for example, topological defects [240].

In this chapter, we remain focussed on the ΛCDM model, but with the in-

clusion of a second dark energy component, which is introduced (in the first

instance) to allow the Friedmann equation written in terms of conformal time η

to be form invariant under the reciprocity transformation a(η) → 1/a(η) of the

universal scale factor [106]. Such an invariance is of general interest, but may

be particularly relevant for Penrose’s recent ‘Cycles of Time’ cosmological model

[179], which posits a cyclic universe in which the ultimate infinitely expanded

state of one phase (or ‘aeon’) is identified with the initial singularity of the next.

In the ΛCDM model, the total density parameter is usually taken to comprise of

contributions from radiation (wr = 1
3
), matter (typically modelled as dust with

wm = 0), curvature (wk = −1
3
), and the cosmological constant (wΛ = −1). These

are listed in Table 2.1, in which one can see an obvious ‘gap’ that we term ‘miss-

ing matter’ with wX = −2
3
. Interestingly, forms of matter have been proposed

for which wX = −2
3
, such as domain walls [20, 49, 164], or particular scalar field
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models [34].

The above observation is merely suggestive of a hitherto neglected additional

component. As we will show below, however, the case for introducing such a com-

ponent is strengthened considerably by rewriting the Friedmann equation (2.37)

in terms of conformal time η. As discussed in [106], the motivation for working

in terms of η is that, for currently accepted values of the density parameters Ωi,0,

the conformal time intervals since the Big Bang (a = 0) and until the conformal

singularity (a = +∞) are both finite. By contrast, although the cosmic time since

the Big Bang is finite, the future singularity occurs at t = ∞. This asymmetry

means that it is more natural to work in terms of conformal time, if one is to

realise scenarios such as Penrose’s Cycles of Time model. Moreover, it is worth

noting that, like cosmic time, which corresponds to the proper time of comoving

observers, conformal time also has a clear operational definition as the time kept

by a clock whose ‘tick’ is the bounce of a light pulse confined to a pair of parallel

mirrors moving, and therefore separating, with the Hubble flow.

Making the change of variable dη = dt/a in the Friedmann equation (2.37),

including an additional missing matter component X, one obtains

1

H2
0

(
da

dη

)2

= Ωr,0 + Ωm,0a+ Ωk,0a
2 + ΩX,0a

3 + ΩΛ,0a
4, (7.1)

where we note that the right-hand side is simply a fourth-degree polynomial in

a. Most importantly, when written in this form, the Friedmann equation has the

interesting property of being form invariant under the reciprocity transformation

a(η)→ 1/a(η), which swaps the nature of the Big Bang and conformal singularity

[106]. This is easily seen by making the change of variable ã(η) = 1/a(η), which

immediately yields

1

H2
0

(
dã

dη

)2

= ΩΛ,0 + ΩX,0ã+ Ωk,0ã
2 + Ωm,0ã

3 + Ωr,0ã
4. (7.2)

Given the observed values of the various present-day density parameters Ωi,0, this

equation is clearly not identical to (7.1). Nonetheless, we do find that, provided

ΩX,0 6= 0, the Friedmann equation is form invariant, with a swapping of roles
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between radiation and the cosmological constant, and between matter and our

additional ‘missing matter’ component (hence our name for it). We note that the

curvature density preserves its dynamical role under the reciprocity transforma-

tion and also that the remaining Einstein equations are satisfied for the new ‘w’

values implied by (7.2), showing that the reciprocity transformation is a symme-

try of the entire set of cosmological equations. 1

It should be noted that the true equation-of-state parameter wi for each com-

ponent will, in general, differ from the canonical values listed in Table 2.1 (al-

though these values are assumed in most cosmological analyses). For example,

non-relativistic matter does not have exactly zero pressure (wm = 0), but a pres-

sure proportional to (v/c)2. Similarly, relativistic particles such as massive neutri-

nos have an equation-of-state parameter slightly less than wr = 1
3
, which changes

with cosmic epoch. As a consequence, the right-hand side of (7.1) will not, in gen-

eral, be a fourth-degree polynomial, in which case it is no longer form-invariant

under the reciprocity transformation ã(η) = 1/a(η). Nonetheless, the basic notion

of swapping the Big Bang and conformal singularity remains valid, and a cosmo-

logical observer may still potentially be unable to determine whether a(η) or ã(η)

corresponds to the scale factor describing the expansion of his/her universe. For

example, suppose the equation-of-state parameter for each component differed

slightly from the canonical values listed in Table 2.1, so that wi → wi +
1
3
εi. Each

1It is further shown in [106] that, provided ΩX,0 6= 0, the Friedmann equation (7.1) is, in fact,
form invariant under the more general Möbius transformation ã(η) = [α− γ a(η)]/[β − δ a(η)],
where α, β, γ and δ are constants, of which the reciprocity transformation ã(η) = 1/a(η)
is a special case (note that there are only three effective constant degrees of freedom in the
Möbius transformation; a convenient choice is to set δα − βγ = 1). Under the general Möbius
transformation, however, one finds that the Friedmann equation (7.1) becomes

1
H2

0

(
dã

dη

)2

=
4∑

i=0

Ω̃i,0ã
i,

where Ω̃i,0 = Ω̃i,0(α, β, γ, δ,Ωr,0,Ωm,0,Ωk,0,ΩX,0,ΩΛ,0) are a new set of ‘density parameters’,
each of which, in general, depends on all the original density parameters, as well as the pa-
rameters in the Möbius transformation. Thus one loses the simple swapping of roles between
different original energy densities that occurs for the reciprocity transformation.
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term on the right-hand side of (7.1) would be separately multiplied by the appro-

priate factor a−εi , whereas each term on the right-hand side of (7.2) would simply

inherit the additional factor ãεi . In particular, strict form-invariance under the

reciprocity transformation is recovered if εΛ = −εr and εX = −εm, together with

the automatic condition εk = 0. In what follows, however, we will neglect this

subtlety and adopt the standard practice in cosmological analysis of assuming

the canonical values for the equation-of-state parameters listed in Table 2.1, in

which case (7.1) and (7.2) are valid and form-invariance under the reciprocity

transformation holds automatically.

Having made this point, however, once one admits the possibility of adding

an extra component to the energy content of the universe, it is natural to extend

one’s investigation by allowing its equation-of-state parameter to vary, rather

than fixing it to wX = −2
3
. This more generic ‘double dark energy’ model comes

at the cost of breaking the reciprocity invariance of the Friedmann equation, even

if the equation-of-state parameters of the other components are assumed to have

their canonical values. Nonetheless, this model is also of interest in its own right

since the observed acceleration of the universal expansion may be driven by more

than just a single dark-energy component. We note that a generic two-component

model of dark energy has previously been considered in [78].

The structure of this chapter is as follows. In Section 7.1, we give a brief

summary of the phenomenology of an additional missing matter component with

wX = −2
3

by investigating its effect on the expansion history of the universe, in

particular the distance-redshift relation, and on the evolution of perturbations,

through the cosmic microwave background and matter power spectra. The results

of these analyses are given in Section 7.2 and our conclusions are presented in

Section 7.3.

7.1 Phenomenology

It is of interest to investigate the phenomenology of a cosmological model con-

taining a second component X with negative pressure (in the event the energy
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Figure 7.1: Dimensionless luminosity distance H0dL(z) as a function of redshift
z for a concordance ΛCDM cosmology with an additional component X with
equation-of-state parameter wX = −2

3 , for different values of ΩX,0.

density is positive), in addition to a cosmological constant. Since our missing

matter model (for which wX = −2
3
) is just a special case (albeit an important

one) of our double dark energy model, we will focus here on the former as being

a representative example of the latter. The effect of the additional component X

on the global expansion history of the universe depends only on the equation-of-

state parameter wX , whereas its effect on the evolution of perturbations will also

depend on the nature of the component X, in particular its assumed dynamical

properties. We therefore consider these two issues separately.

7.1.1 Background evolution

The inclusion of the ΩX,0 into (2.14) thus directly affects the expansion history

embodied in H(z), and hence can serve either to increase or decrease the lumi-

nosity distance dL(z) to an object at redshift z. Figure 7.1 illustrates this effect

for a few representative values of ΩX,0. If ΩX,0 > 0, the apparent luminosity is

reduced and hence the luminosity distance is increased compared to the standard

ΛCDM model. The opposite effect occurs for ΩX,0 < 0. The power of the lumi-

nosity distance as a cosmological probe resides in the fact that it can be simply
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related to distance modulus µ apparent brightness m(z) obtained directly from

a set of standard candles (see Section 3.2.1).

It should be pointed out that, for the background evolution, the combina-

tion of a cosmological constant with wΛ = −1 and an additional component X

with constant wX is equivalent, under certain conditions outlined below, to a

single dark energy component with a time-varying equation-of-state parameter

weff(a) given by the ratio of the combined pressure of the two components to their

combined density [78], namely

weff(a) =
−ΩΛ,0 + wXΩX,0a

−1

ΩΛ,0 + ΩX,0 a−1
. (7.3)

Examples of such models have been studied extensively [41, 111, 195, 208], albeit

not with the particular form of weff(a) given above. Plotting weff(a), assuming

‘plausible’ values ΩΛ,0 ∼ 0.7 and ΩX,0 ∼ 0.2, shows that the variation with either

a or redshift z is non-linear, so weff(a) is not contained within either of the common

w(z) = w0 +w1z or w(a) = w0 +wa(1− a) parameterisations. More importantly,

however, it should be noted that if ΩΛ,0 and ΩX,0 have different signs, as we allow

in our analysis, then weff(a) becomes singular at a = |ΩX,0/ΩΛ,0|. Thus, if ΩΛ,0 or

ΩX,0 (or both) are allowed to take positive and negative values, then our missing

matter (or double dark-energy) model is not, in general, described by a single

time-varying dark-energy component.

7.1.2 Evolution of perturbations

An additional component X will affect the growth of perturbations through its

contribution to H(z) and the evolution of the matter density. Moreover, we as-

sume here that X has the same dynamical behaviour as that usually assumed for

a generic dark energy component. In particular, we use the CAMB [134] dark-

energy module developed by [71], in which dark energy is assumed itself to exhibit

Gaussian adiabatic perturbations. It is worth noting that, as the equation-of-state

parameter approaches −1, the effects of the dark energy perturbations disappear,

-134-



7.1 Phenomenology

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  10  100  1000

l(l
+1

)C
l/2
! 

(µ
k2 )

l

"X,0 = -0.2
"X,0 = 0.0
"X,0 = 0.2

Figure 7.2: CMB power spectra for a concordance ΛCDM model with an addi-
tional component X, with equation-of-state parameter wX = −2

3 , for several values
of ΩX,0.

as one would expect for a pure cosmological constant. 1

We plot the CMB power spectra in Figure. 7.2, from which we see that, as

one might expect, the main effect of a non-zero ΩX,0 is to shift the positions of

the acoustic peaks, which are sensitive to the spatial geometry of the universe,

and hence depend on the total energy density of all the components. Thus, one

would expect constraints on ΩX,0 from CMB observations to be tightly correlated

with the constraints on ΩΛ and Ωk. For positive values of ΩX,0, we also see a

considerable enhancement of power on the largest scales from the late-time ISW

effect.

In Figure 7.3, we plot the predicted matter power spectra for different values

of ΩX,0; again the other parameters are set to their concordance values. We see

that the dominant effect of the additional component is on the normalisation

1It should be borne in mind, however, that a possible physical instantiation of an additional
component X with wX = − 2

3 could be in the form of domain-wall topological defects, for
example, in which case the effect on the generation and evolution of pertubations may be very
different to that assumed here.
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Figure 7.3: Matter power spectra for a concordance ΛCDM model with an addi-
tional component X, with equation-of-state parameter wX = −2

3 , for several values
of ΩX,0.

of the matter power spectrum. The amplitude of fluctuations is enhanced for

ΩX,0 > 0 and suppressed for ΩX,0 < 0. By contrast, the positions of the acoustic

oscillations, which depend largely on the matter density, are unaffected by the

introduction of the additional component.

It is worth noting that, although the background evolution of the universe is

identical for our missing matter (or double dark-energy) model and for a model

with a single time-varying dark energy component defined by (7.3) (provided ΩΛ,0

and ΩX,0 have the same sign), the evolution of perturbations is, in general, dif-

ferent for the two cases. This is true even in the simplest case where one assumes

the same dynamical behaviour for the generic dark energy components in the

two models, namely that they exhibit Gaussian adiabatic perturbations. This is

illustrated in Figure. 7.4, in which we plot the CMB and matter power spectra

for a specific example of each model. Consequently, we reiterate our earlier com-

ment that the many previous studies of models containing a single time-varying

dark-energy component are not equivalent to the study presented here.

We now perform a Bayesian parameter estimation and model comparison
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Figure 7.4: CMB power spectra (top) and matter power spectra (bottom) for:
a concordance ΛCDM model with an additional component X, with equation-of-
state parameter wX = −2

3 and density ΩX,0 = 0.2 (blue line); and a CDM model
with a single time-varying dark energy component with effective equation-of-state
parameter weff(a) defined in (7.3) (green line).

analysis of our ‘missing matter’ and ‘double dark energy’ models, using recent

cosmological observations, presented as our dataset I in Section 3.4. Through-

out the analysis we consider the base and secondary parameters, along with

the ranges of the uniform priors, shown in Table 3.3 and curvature flat prior

Ωk,0 = [−0.05, 0.05]. Our hypothetical additional component is characterised by

its density parameters ΩX,0 and equation-of-state parameter wX . We assume a

uniform prior on ΩΛ,0 in the range [−1, 2] throughout. For the missing energy

model, we have wX = −2
3
, and for the double dark energy model we assume

the uniform prior wX = [−2,−1]. To carry out the exploration of the param-

eter space, we incorporate the extra component into the standard cosmological

equations, by performing the minor modifications to the CAMB code.

7.2 Results

For comparison purposes, we first assume no additional component X, in order

to determine the constraints imposed by the current combined data sets on the
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standard ΛCDM model. We find the constraints on the standard parameters

{Ωb,0h
2, Ωdm,0h

2, θ, τ, As, ns} remain essentially unaffected by the introduction

below of our additional component X, and so we do not consider them further.

7.2.1 Missing matter model

The inclusion of a missing matter component X with wX = −2
3

considerably

broadens the parameter constraints. In particular, we find: ΩΛ,0 = 0.837± 0.149,

which constitutes an order-of-magnitude increase in the error bars as compared

with the standard ΛCDM model, Ωm,0 = 0.276± 0.015, Ωk,0 = −0.0047± 0.0068

and H0 = 69.90 ± 1.76. Figure 7.5 shows 1D and 2D marginalised posterior

distributions for the density parameters (note that Ωm,0 = 1−ΩΛ,0−Ωk,0−ΩX,0).

As expected, we observe a clear degeneracy between ΩX,0 and both ΩΛ,0 and

Ωk,0. The 1D constraint on the density parameter of missing matter is ΩX,0 =

−0.11 ± 0.14. The current data thus prefer a slightly negative value, which is

difficult to interpret physically, although the 1D marginal shows moderate relative

probability even for ΩX,0 ∼ 0.2, and so the presence of an appreciable missing

matter component cannot be ruled out. Our results are, however, still consistent

with a standard ΛCDM model. This view is supported by our Bayesian model

comparison. We find that the log-evidence difference (or Bayes factor) between the

missing matter model and the standard ΛCDM model is BΛ+X,Λ = −1.45± 0.30.

According to Jeffreys guideline [112, 234], the inclusion of the missing matter

component is therefore significantly disfavoured by current cosmological data.

7.2.2 Double dark energy model

We now allow for the equation-of-state parameter wX for our additional compo-

nent to be a free parameter (albeit still independent of redshift), for which we

assume a uniform prior in the range wX = [−3
2
,−1

2
]. We thus allow for the possi-

bility that this second dark-energy component could be a form of phantom energy

with wX < −1 [233]. Figure 7.6 shows the resulting 1D and 2D marginalised pos-

terior distributions for wX and the density parameters in the model (once again,

note that Ωm,0 = 1 − ΩΛ,0 − Ωk,0 − ΩX,0). At the top-right of the figure we also

give a representation of the 3D posterior in the (wX ,ΩX,0,ΩΛ,0) subspace, where
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Figure 7.5: 1D and 2D marginalised posterior distributions for density parameters
in the missing matter model (note that Ωm,0 = 1 − ΩΛ,0 − Ωk,0 − ΩX,0). The 2D
constraints are plotted with 1σ and 2σ confidence contours.

the colour indicates the value of ΩΛ,0.

The 1D constraints on the standard parameters are as follows: ΩΛ,0 = 0.647±
0.573, Ωm,0 = 0.275 ± 0.015, Ωk,0 = −0.0031 ± 0.0058, H0 = 69.95 ± 1.80. The

constraints on the parameters describing the additional, second dark-energy com-

ponent may be given as wX = −1.02± 0.20 and ΩX,0 = 0.080± 0.574, although

these numbers obscure the bi-modal nature of the marginal (wX ,ΩX,0)-space and

(wX ,ΩΛ,0)-space distributions (see below). These results are clearly consistent

with a standard ΛCDM model, although the inclusion of the additional dark-

energy component has again resulted in the uncertainties in the constraints on the

standard parameters being much larger than those obtained assuming a ΛCDM

model. Indeed, the 1D marginal for ΩX,0 shows moderate relative probability even

for ΩX,0 ∼ 1.

Moreover, the 2D and 3D marginal distributions in Figure. 7.6 have some cu-

-139-



7. MISSING MATTER AND DOUBLE DARK ENERGY

−1.5 −1 −0.5
−2

0

2

w
X

Ω
X

,0

 

 

ΩΛ,0

−0.5 0 0.5 1 1.5

−1.5 −1 −0.5

−1 0 1

−1 0 1 2

−0.02−0.01 0 0.01
Ω

k,0

Ω
X

,0

−1.5 −1 −0.5

−1

0

1

Ω
Λ

,0

−1.5 −1 −0.5
−1

0

1

2

w
X

Ω
k,

0

−1.5 −1 −0.5

−0.02
−0.01

0
0.01

−1 0 1
−1

0

1

2

Ω
X,0

−1 0 1

−0.02
−0.01

0
0.01

ΩΛ,0

−1 0 1 2

−0.02
−0.01

0
0.01

Figure 7.6: 1D and 2D marginalised posterior distributions for density parameters
in the double dark energy model (note that Ωm,0 = 1−ΩΛ,0−Ωk,0−ΩX,0). The 2D
constraints are plotted with 1σ and 2σ confidence contours. The top-right panel
shows the 3D posterior distribution in the (wX ,ΩX,0,ΩΛ,0) subspace, where the
colour code indicates the value of ΩΛ,0.

rious and interesting features that are worth noting. First, as might be expected,

we again see a pronounced degeneracy between ΩΛ,0 and ΩX,0. Of more inter-

est, however, is the bi-modal nature of the 2D marginals in the (wX ,ΩΛ,0) and

(wX ,ΩX,0) planes, both of which have a distinctive ‘butterfly’ shape, albeit ex-

hibiting opposite correlations. Focussing on the latter, we see that the two peaks

are offset from the standard ΛCDM model (−1, 0), although that model remains

admissible. Indeed, with the help of the 3D marginal in the (wX ,ΩX,0,ΩΛ,0) sub-

space plotted in the top-right of Figure 7.6, we see that the two modes of the

distribution correspond to models with ΩΛ,0 ≈ 0.4, ΩX,0 ≈ 0.3, wX ≈ −1.2 and

ΩΛ,0 ≈ 1.0, ΩX,0 ≈ −0.3, wX ≈ −0.8, respectively. The former model has the

advantage that the density parameters for both dark energy components are pos-
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itive, but requires the second component X to be a form of phantom energy. In

the latter model, the second dark energy component has a more physically rea-

sonable value of wX , but is required to have a negative density parameter, which

is difficult to interpret physically (at least more so than a negative pressure).

Indeed, we see that this latter case is broadly consistent with our findings for the

missing matter model discussed in the previous subsection.

The marginal distribution in (ΩX,0,ΩΛ,0) subspace shows a strong correlation

between these energy densities that would imply the potential for a trade-off be-

tween them. One might be concerned, however, that the marginal distribution

plotted is strongly dominated by the contribution (after marginalising over wX)

from near wX = −1. If so, one could then not infer the potential of a trade-off be-

tween these two energy densities at (any) other values of wX . To investigate this

possibility, we also calculated the conditional distributions in (ΩX,0,ΩΛ,0) sub-

space for a small set of fixed wX-values in the range [−0.7,−1.3]. The resulting

distributions were, however, very similar to that plotted in Figure 7.6, and so indi-

cating that the two energy densities can indeed be traded-off against one another.

Also of interest is our Bayesian model comparison, which finds that the log-

evidence difference (Bayes factor) between the double dark energy model and

standard ΛCDM is BΛ+X,Λ = −0.16±0.30. This shows that neither model is pre-

ferred over the other; indeed they are indistinguishable to within the statistical

uncertainty on the computed evidence values. Thus, the two additional parame-

ters ΩX,0 and wX in the double dark energy model allow it the freedom to fit the

data sufficiently better than ΛCDM to compensate for the corresponding increase

in the prior volume, and hence the model is not penalised by the evidence.

7.3 Discussion and Conclusions

We have investigated the possibility that there exist two dark-energy components

in the universe: a cosmological constant, with wΛ = −1; and an additional com-

ponent X with equation-of-state parameter wX . In the first instance, we fix the

equation-of-state parameter of X to the value wX = −2
3
. This ‘missing matter’
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model corresponds to the special case in which the additional component is re-

quired for the Friedmann equation written in terms of conformal time η to be

form invariant under the reciprocity transformation a(η) → 1/a(η). Foregoing

this requirement, we then consider the more general ‘double dark energy’ model,

in which wX is a free parameter assumed to have uniform prior in the range

wX = [−3
2
,−1

2
]. For both models, we perform a Bayesian parameter estimation

and model selection analysis, relative to standard ΛCDM, using recent cosmolog-

ical observations

For the missing matter model, the introduction of the additional component X

significantly broadens the constraints on the standard parameters in the ΛCDM

model, but leaves their best-fit values largely unchanged. The 1D marginalised

constraint on the missing matter density parameter is ΩX,0 = −0.11±0.14. Thus,

current cosmological observations prefer a slightly negative value, which is difficult

to interpret physically, but the posterior on this parameter is sufficiently broad

that significant relative probability exits even for ΩX,0 ∼ 0.2, and so the presence

of a missing matter component cannot be ruled out. Nonetheless, our results are

consistent with ΛCDM and our Bayesian model selection analysis disfavours the

missing matter model, as compared to ΛCDM, by about 1.5 log-units of evidence.

For the double dark energy model, the constraints on standard ΛCDM param-

eters are again considerably broadened. The 1D marginalised constraints on the

second dark energy component are ΩX,0 = 0.080± 0.574 and wX = −1.02± 0.20,

respectively, which are again consistent with ΛCDM. Once more, however, the 1D

marginalised posterior on ΩX,0 is sufficiently broad that even ΩX,0 ∼ 1.0 is not

ruled out. More interestingly, the 2D marginal distributions in the (wX ,ΩΛ,0) and

(wX ,ΩX,0) planes are both bi-modal, exhibiting a ‘butterfly’ shape. In particular,

the peaks in the (wX ,ΩX,0)-plane are offset from the ΛCDM value (−1, 0), al-

though the latter is still acceptable. The two modes of the distribution correspond

to models with ΩΛ,0 ≈ 0.4, ΩX,0 ≈ 0.3, wX ≈ −1.2 and ΩΛ,0 ≈ 1.0, ΩX,0 ≈ −0.3,

wX ≈ −0.8, respectively. We also find that the double dark energy model has

a similar Bayesian evidence to ΛCDM to within the numerical uncertainty, and
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Figure 7.7: 1D and 2D marginalised posterior distributions for density parame-
ters in the double dark energy model (note that Ωm,0 = 1−ΩΛ,0 −Ωk,0 −ΩX,0) as
derived from simulated observations of the CMB power spectrum and Type-Ia su-
pernovae generated assuming a concordance ΛCDM cosmology. The 2D constraints
are plotted with 1σ and 2σ confidence contours.

hence neither model is preferred over the other.

One potential cause for the observed bimodality in the 2D marginalised pos-

teriors would be some mutual inconsistency between two or more of the datasets

used in our analysis, such that they preferred significantly different values for

cosmological parameters. We therefore performed a Bayesian consistency analy-

sis [94, 156] by partitioning the full combined dataset D into its four constituent

parts Di (i = 1, . . . , 4), namely WMAP, ACT, Union 2 and BAO, and analysing

each independently (together, in each case, with the constraints from BBN and

HST). In particular, we calculated the evidence ratio (3.23) and find thatR = 2.15

indicating that the bimodality in the posterior is not caused by any inconsistencies
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between the individual datasets. To investigate the significance of the observed bi-

modality of the posterior, we performed simulated observations of the CMB power

spectrum and Type-Ia supernovae apparent brightness versus redshift, assuming

a standard concordance ΛCDM model and observational data quality commen-

surate with the real CMB and supernovae data used in our analysis. These were

combined with the same constraints on the baryon density from BBN [33] and

Gaussian prior on H0 from the HST key project [192] that were used in the analy-

sis of the real data. The resulting posterior distribution of the density parameters

is illustrated in Figure 7.7. As one might expect, the 2D marginal distributions

in the (wX ,ΩΛ,0) and (wX ,ΩX,0) planes do exhibit a characteristic ‘plus’ shape,

which is indicative of the parameter degeneracies along the coordinate axes. In

contrast to the bimodal posterior obtained from the real data, however, we see

that the analysis of simulated observations yields a unimodal posterior centred

correctly on the input concordance parameters values. This suggests that the bi-

modal nature of the posterior in Figure 7.6 may be driven by features present in

the real data, but absent from the ΛCDM simulation.

To explore this possibililty further, we analysed 10 more sets of simulated ob-

servations. The resulting 2D marginalised posteriors in the (wX ,ΩX,0)-plane are

shown in Figure 7.8. In the majority of cases, the posterior is unimodal, but for

some realisations a weak bimodality is observed. In each such case, however, the

bimodality is typically less pronounced than that observed for the real data in

Figure 7.6 and lies in the orthogonal direction. It is probably safest to conclude

simply that current observations are insufficient to decide whether the bimodality

found for the real data is statistically significant.

Since the double dark energy model remains viable with current cosmological

observations, it is of interest to generalise it further. The bimodality we observe

in Figure 7.6 might be evidence of contributions from two species X and Y , with

wX ≈ −1.2 and wY ≈ −0.8. It might therefore be of interest to remove the

requirement of having one fluid with w = −1 and investigate if the value of either

wX or wY settles near −1. Also of interest would be to allow the equation-of-state

parameter wX(z) of the second dark energy component (and possibly also of Y )
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double dark energy model, derived from 10 realisations of simulated observations
of the CMB power spectrum and Type-Ia supernovae generated assuming a concor-
dance ΛCDM cosmology. The 2D constraints are plotted with 1σ and 2σ confidence
contours.

to depend on redshift [233]. We plan to investigate these possibilities in a future

work.
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Chapter 8
Modified Gravity

Although ΛCDM provides a good fit to current data, it still faces some theoret-

ical challenges, such as the coincidence and fine-tuning problems [36, 174, 176].

Also, recent experiments with the use of model-independent techniques for recon-

structing the properties of dark energy, support a mild time-dependent evolution

of w(z) [7, 79, 129, 233, 252]. Hence alternative proposals to the conventional cos-

mological constant term have emerged. Several options involve the introduction

of new exotic fluids to the energy-momentum tensor, such as quintessence and

K-essence, amongst many other scenarios [14, 43, 189, 234, 255]. Besides the dark

sector, there exists a variety of models where the present expansion is realised

due to modifications of the laws of gravity (MG) on cosmological scales. Some

of them introduce non-linear terms to the standard Einstein-Hilbert action, like

f(R) theories [13, 99, 166, 197, 220], or higher dimensional braneworld models

[67, 152]. Other alternatives and combinations are also considered as good can-

didates [for a review see: 50, 66, 72, and references therein].

As a consequence of the introduction of different models, a fundamental ques-

tion arises regarding how to distinguish amongst these possibilities. The cosmic

acceleration, produced by any of these proposals, might affect both the expan-

sion history and the growth rate of large-scale structure in the Universe. Hence,

a natural search for departures from the ΛCDM model is to exploit present and

future cosmological observations.
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The cosmic evolution driven by a modified gravity model may be described in

terms of an effective equation-of-state weff(z), which is fitted with luminosity dis-

tance constraints. However, the extra degrees of freedom in extended GR models

result in more freedom to reproduce any desired background evolution. That is,

given the Hubble rate H = H(a), one can identify a complete family of mod-

els such that the Friedmann equation is satisfied, and hence at the background

level, suitable MG theories might be indistinguishable from ΛCDM or dark energy

theories [171, 218]. Then, our analysis is mainly focussed on the cosmological per-

turbations. In this context, two scalar field potentials, Ψ(t,x) and Φ(t,x), specify

the evolution of linear perturbations around a flat FRW background:

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1− 2Φ)γijdx
idxj. (8.1)

Note the change of convention in the sign Φ→ −Φ respect to Section 2.3; some

other conventions may be found in [149]. Standard ΛCDM and models with min-

imally coupled scalar fields are based on the assumption that the Newtonian

potentials Φ and Ψ, satisfy the relation Φ = Ψ. Nevertheless, modified gravity

models usually predict the existence of an effective anisotropic stress, so the two

metric potentials are no longer necessarily the same. Thus, we may differentiate a

dark energy model from a particular modified gravity theory via the relationship

between the two metric potentials Φ, Ψ and the density perturbation δm [110].

For the purpose of detecting possible departures from general relativity, we

incorporate time and scale-dependent functions, µ(a, k) and γ(a, k), into the Pois-

son and anisotropy equations in standard GR. This approach has been employed

before in the search for departures from ΛCDM, see for instance [12, 77, 158,

219, 254]. Then, for a generic MG theory, the linearised Einstein-like equations,

within the quasi-static approximation (2.104), have the following form

k2

a2
Ψ = −κ

2

2
µ(a, k) δρm, (8.2)

Φ = γ(a, k) Ψ, (8.3)

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 0. (8.4)
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The screened mass function µ is interpreted as the ratio of an effective gravita-

tional constant relative to the Newtonian constant, µ ≡ Geff(a, k)/GN. The other

relevant function, the gravitational slip parameter γ, defined as the ratio of the

spatial perturbation to the time-time perturbation of the metric γ ≡ Φ/Ψ, is

seen as an effective anisotropic stress. We observe that modifications of GR, for

which µ(a, k) = γ(a, k) = 1, affect, through the Newtonian potentials, the growth

of matter density perturbations δm, as shown in equation (8.4). Thus, current or

future surveys, may allow us to distinguish modified gravity models from general

relativity with a dark energy component.

We consider modified gravity models for which the action may be written as

S =

∫
d4x
√−g

[
1

2κ2
f(R, φ)− 1

2
w(φ)gµν∂µφ∂νφ− V (φ)

]
+ SM(gµν , ψM), (8.5)

where κ2 ≡ 8πG, g is the determinant of the metric gµν . f(R, φ) is some arbitrary

function of the Ricci scalar R and the scalar field φ; w(φ) and V (φ) are functions of

φ, and the matter action SM depends on gµν and matter fields ψM. Notice that the

action (8.5) contains theories such as Brans-Dicke theory, scalar-tensor theories,

and dilaton gravity. In particular the model f(R) = R − 2Λ corresponds to the

standard Einstein-Hilbert action. We consider the standard metric formalism by

performing the variation of the action with respect to the metric tensor gµν ,

bearing in mind that in the Palatini formalism different field equations may arise

for a Lagrangian density non-linear in R [75, 241]. Varying the action with respect

to gµν and φ, the following field equations are obtained [72]

FGµν − 1

2
(f −RF )gµν − F,µ;ν +�Fgµν

= κ2

[
w

(
φ,µφ,ν − 1

2
gµν∂

λφ∂λφ

)
− V gµν + T (M)

µν

]
, (8.6)

�φ +
1

2w

(
w,φ∂

λφ∂λφ− 2V,φ +
f,φ
κ2

)
= 0. (8.7)

where subscript ‘,X ’ stands for the partial derivative with respect to the variable

X, e.g, F (R) ≡ ∂f/∂R = f,R and likewise F,R = f,RR = ∂2f/∂R2. Also · ≡ d/dt
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and ′ ≡ d/d ln a below; Gµν is the Einstein tensor.

In this chapter we focus on a version of the Starobinsky f(R) model and with

the use of current data we constrain the parameter-space. Finally, because the

addition of parameters to the standard model may lead to an arbitrarily accu-

rate fit, we consider the Bayesian evidence as a quantitative implementation of

Occam’s razor. In this way, we obtain the model preferred by current observations.

The outline of the chapter is as follows. In Section 8.1, we discuss the back-

ground evolution and scalar perturbations for a modified gravity theory, in par-

ticular f(R) models. We then specify observable quantities used to constrain the

parameter-space through current data sets. The constraints on the parameters

used to describe the modified gravity models, along with Bayesian evidence val-

ues, are discussed in Section 8.3. We present our conclusions in Section 8.4.

8.1 f (R) Gravity

The simplest family of MG models that give rise to acceleration of the universal

expansion are obtained by replacing the Ricci scalar R in the usual Einstein-

Hilbert Lagrangian by a non-linear function of R. Hence we consider the action

(8.5) in the form of f = f(R), without the inclusion of a scalar field, to describe

this class of gravity models. Since modifications of gravity are more apparent at

low redshift, we henceforth ignore the radiation component due to its relative

unimportance for structure formation at late time. We thus base our analysis on

non-relativistic matter with background energy density ρm and negligible pressure

pm = 0.

8.1.1 Background evolution

For the background evolution, the FRW metric leads to the Ricci scalar given by

R = 6(2H2 + Ḣ). (8.8)
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The modified Friedmann equation then becomes:

3FH2 = (FR− f)/2− 3HḞ + κ2ρm. (8.9)

To find solutions for H and R, we follow [99, 157] and introduce new variables,

which vanish in the high-redshift limit where f(R) modifications are negligible:

yH ≡ H2

Rc

− a−3, yR ≡ R

Rc

− 3a−3, (8.10)

withRc given in terms of the average matter-density today ρm,0, byRc = κ2ρm,0/3.

Thus, equations (8.8) and (8.9) are expressed as a set of ordinary differential equa-

tions

y′H =
1

3
yR − 4yH , (8.11)

y′R = 9a−3 (8.12)

− 1

yH + a−3

1

Rcf,RR

[
yH − (f,R − 1)

(
1

6
yR − yH − 1

2
a−3 +

1

6

f −R
Rc

)]
.

It may be shown that the expansion history generated by a f(R) model is identical

to that of a standard dark-energy model with an effective equation-of-state:

1 + weff = −1

3

y′H
yH
. (8.13)

8.1.2 Scalar perturbations

The evolution of the scalaron field F , is determined from the trace of Equa-

tion (8.6)

3�F (R) + F (R)R− 2f(R) = −κ2ρm. (8.14)

This field equation can be written as a Poisson equation �F (R) = ∂Veff/∂fR,

with an effective potential

∂Veff
∂fR

=
1

3

[
2f(R)− F (R)R− κ2ρm

]
, (8.15)

which presents an extremum value located at 2f(R)− F (R)R = κ2ρm.
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In the high-density region, where |F − 1| � 1 and |f −R| � 1, the extremum of

the potential defines the time-dependent scalaron mass MF

M2
F ≡

∂2Veff
∂f 2

R

=
R

3

(
1

m
− 1

)
, (8.16)

where m = Rf,RR/f,R characterises the deviation of the background dynamics

from the ΛCDM model (m = 0 at all times) [10]. Thus, viable f(R) models are

constructed such that the scalaron mass MF is heavy enough in the regime of high

matter density and becomes lighter at the present time to produce the acceler-

ated expansion of the Universe. This process may be achieved via a chameleon

mechanism [26, 116] ensuring that local gravity constraints are locally satisfied

[99, 247]. On the other hand, the evolution of perturbations at linear order lead

to expressions for the Newtonian potentials of the form [229]:

k2

a2
Φ = −κ

2δρm
2F

2k2/a2 + 3M2
F

3k2/a2 + 3M2
F

,
k2

a2
Ψ = −κ

2δρm
2F

4k2/a2 + 3M2
F

3k2/a2 + 3M2
F

. (8.17)

It is useful to introduce a function A(a, k) [186] given by the squared ratio of the

Compton wavelength to the physical wavelength of a mode:

A(a, k) =

(
k

aMF

)2

. (8.18)

Making a comparison of the equations for Φ and Ψ in (8.17) with those written

in (8.2) - (8.3) for µ and γ, one has:

µ(a, k)F = 1 +
A(a, k)

3 + 3A(a, k)
, γ(a, k) = 1− 2A(a, k)

3 + 4A(a, k)
. (8.19)

We observe that f(R) models, through µ(a, k) and γ(a, k), predict a characteristic

scale-dependent growth of LSS which might be observationally detectable. The

impact of the above relations on the evolution of the gravitational potentials

and the growth of density perturbations is as follows: for a mode located in

the general relativistic regime (A � 1) the scalaron behaves as a massive field

making deviations from GR negligible, and the standard relation Φ ' Ψ is thus

recovered. On the other hand, when a mode is situated within the scalar-tensor

-152-



8.1 f(R) Gravity

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

-6 -4 -2  0  2  4  6

µ(
!
)

log10A

MGGR

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-6 -4 -2  0  2  4  6

!(
"
)

log10A

MGGR

Figure 8.1: Functional behaviour of µ and γ. The vertical line A(a, k) = 1 repre-
sents the transition regime between GR and ST. Left to this line GR is recovered,
whereas right to the line the growth of structures is enhanced by modifications of
gravity.

regime (A� 1), the scalaron behaves as a light particle, giving rise to an effective

Newtonian constant Geff = 4/(3F ), and the relation between the metric potentials

becomes Φ ' Ψ/2. Therefore, the enhancement of the gravitational potential Ψ

increases the growth rate of linear density perturbations on scales below the

Compton wavelength [220]. If the transition between these two regimes (A = 1)

occurred during matter domination, modifications of the observed matter power

spectrum might signal deviations from the ΛCDM model [186]. The two regimes

are described as follow:

µ ' 1

F
, γ ' 1, A� 1 GR, (8.20)

µ ' 4

3F
, γ ' 1

2
, A� 1 ST. (8.21)

Note that the factor F−1 corresponds to a rescaling of the Newtonian constant

GN, for which the value is very close to unity for models that satisfy local and

Galactic constraints. Figure 8.1 shows µ(A) and γ(A) functions. The vertical axis

represents the amplitude of µ and γ as a function of the squared ratio of the Comp-

ton wavelength to the physical wavelength, and the vertical line, A(a, k) = 1, the

transition between the GR and the ST regime. Left of this line the behaviour is

well described by (8.20), whereas on the right hand side, the observed enhance-

ment of the growth of structures is described by (8.21).
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8.1.3 A particular f(R) model

We have, so far obtained expressions to describe the background evolution (8.13)

and the cosmological perturbations (8.19) for a generic f(R) model. Here we

consider a particular f(R) model and look at its observables. By construction,

we assume f(R) is a well-behaved function, continuous in all its derivatives. It

also has to satisfy some further conditions in order to yield to a viable theory

[11, 186, 220, 230]: f,R > 0 to avoid the appearance of ghosts; f,RR > 0 to avoid

tachyonic instability; f(R) → R − 2Λ to include phenomenology of ΛCDM as a

limiting case, and recover BBN and CMB constraints at early times; |F0−1| � 1

to satisfy Solar and Galactic constraints. Thus, we focus the study on a version

of the Starobinsky model [220]:

f(R) = R− λRc

[
1−

(
1 + α

R

Rc

)−n]
, (8.22)

with positive constants λ, α and n, and R given by the solutions of equations

(8.8) and (8.9). In the region of high density (R� Rc), model (8.22) and the Hu

& Sawicki model [99] have a similar behaviour. Also model (8.22), with n = 1,

closely mimics mCDTT [37] plus a cosmological constant, and the inverse squared-

curvature model for n = 2 [162]. Some other f(R) models with an exponential

form [13] may also be considered as viable alternatives.

Given the f(R) model (8.22), we are now able to compute its corresponding

effective equation-of-state weff(z) (8.13), which dominates the dynamics of the

late-time expansion rate, and µ, γ (8.19) to describe the perturbations. Another

function to bear in mind is the rescaling factor F of the Newtonian constant,

given by

F (R)− 1 = −λαn
(

1 + α
R

Rc

)−n−1

. (8.23)

An important point to emphasise is the behaviour presented by |F−1|: asR� Rc,

|F − 1| becomes negligible, thus approaching the General Relativistic limit. Pre-

vious studies have chosen F0 = F (t0) as a sampling parameter, although in our

case, we consider it more natural to sample over α, with F0 being a derived pa-

rameter. Also notice that at the extremum of the effective potential (8.15), the

expansion history can approximate ΛCDM by setting λ ' 6Ωeff/Ωm, with Ωm an

-154-



8.1 f(R) Gravity

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

 0  2  4  6  8  10

w eff
(z)

z

n = 1

!=0.05
!=0.1
!=0.2
!=0.5

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

 0  2  4  6  8  10

w eff
(z)

z

n = 2

!=0.05
!=0.1
!=0.2
!=0.5

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0  2  4  6  8  10  12  14

µ(
z, 

k=
0.1

)

z

!=0.05
!=0.5
!=5.0
!=50.0

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0  2  4  6  8  10  12  14

µ(
z, 

k=
0.1

)

z

!=0.05
!=0.5
!=5.0
!=50.0

Figure 8.2: Functions used in the description of a modified gravity model, using
diffent values of α and n. Effective equation-of-state weff (top) and the screen mass
(bottom) as a function of redshift z, at scale k = 0.1.

effective matter density and Ωeff = 1− Ωm.

Hence, for the model (8.22) the effective equation-of-state weff (8.13) and the

squared ratio of the Compton wavelength to the physical wavelength of a mode

A(a, k) (8.18) are now parameterised in terms of α, n and the cosmological pa-

rameters Ωm,0 and H0. These parameters together determine the epoch and scale

on which modifications to GR may be relevant. In general, having a dependence

on space and time makes the analysis more challenging. To understand the re-

lationship of the new parameters with current observations let us consider some

particular cases. In Figure 8.2 we show some of the relevant functions which pa-

rameterise the MG models using different α values, for n = 1 (left panel) and

n = 2 (right panel); in both cases we have maintained fixed values of Ωm,0 = 0.25

and H0 = 70. The top panels show the behaviour of the effective equation-of-state

for different values of α. We observe that at the background level, modified gravity

models with α & 0.5 (n = 1) or α & 0.2 (n = 2) are essentially indistinguishable
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from the cosmological constant through current observations [234]. However, at

the perturbations level (bottom panel), larger values of α are differentiated by the

epoch they cross the regime line A = 1, and therefore µ is described by (8.21).

A similar interpretation is used for the n parameter: a transition taking place

at later times corresponds to higher values of n. One notices the existence of a

pronounced degeneracy: for an increment in n, small values of α mimic the same

behaviour, for instance, models with {n = 1, α = 5} and {n = 2, α = 0.5} behave

very similar. We also observe that in the limits of α� 1 and/or high n the phe-

nomenology of ΛCDM is thus recovered. This will be helpful in the choice of an

appropriate prior of α, for instance, values of α > 50 (n = 1) can essentially be

considered as the ΛCDM model, similarly for n = 2 with α > 5. Finally, we em-

phasise that the screened mass function µ and the gravitational slip parameter γ

must equal one, at high redshifts to recover GR. That is, in order to maintain the

properties of Big Bang Nucleosynthesis (BBN) at early times, we should impose

the condition

µ(z, k) = γ(z, k) = 1, z � z0. (8.24)

This condition is translated into A� 1 at z � z0 for the whole range of physically

relevant wavenumbers.

8.2 Analysis

We seek to impose constraints on the aforementioned parameterisations from

cosmological observables as well as determine which model best describes current

data. Since the evolution of matter perturbations and gravitational potentials

may differ from standard GR, observations of CMB anisotropy, cosmic evolu-

tion and growth of structure are important probes for discriminating amongst

modified gravity models. In order to compare the modified gravity influence on

observable quantities, such as the CMB, matter power spectrum and luminosity

distances, we incorporate µ and γ functions to the standard Boltzmann CAMB

code [134] up to z ∼ 30, when deviations introduced by modified gravity become

negligible. Different versions of the Modified CAMB code have also released by
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[95, 101, 254]. Also, with the use of a post-Friedmann prescription (PPF) imple-

mented by [71], we have included the effective equation-of-state weff predicted by

a modified gravity model. To constrain the parameter-space, we consider the set

observations II introduced in Section 3.4.

The parameterisations of MG models contain the ΛCDM model as a subset in

their parameter space, thus the flat priors on the parameters in common are kept

identical for each considered case (see Table 3.3). In the MG models we have also

included the running parameter nrun defined at pivot point k0 = 0.015 Mpc−1.

With regards to the additional parameters, we assume three illustrative cases:

n = 1, 2 with flat priors α = [0, 5] and α = [0, 50] respectively; and varying n

within the range n = [0, 2] and α = [0, 50].

8.3 Results

In this section we present the resulting posterior distributions and model evi-

dences computed from the gravity models using our data sets. Despite the ad-

ditional parameters, the mean values of the standard cosmological parameters

remained basically unaffected. That is, their likelihoods peak around standard

ΛCDM values, and so we do not consider them further.

We have restricted our analysis to the model presented in (8.22). As we pointed

out, this particular parameterisation can be studied in terms of α, n and the cos-

mological parameters Ωm,0, H0; although, constraints on H0 and Ωm,0 present no

significant deviations from the ΛCDM model. Figure 8.3 shows 2-D marginalised

posterior distributions of the modified gravity parameter α along with the rescal-

ing factor and the effective equation of state at the present time, |F0 − 1| and

weff,0, respectively. The top panel corresponds to n = 1, whereas n = 2 to bot-

tom panel. We observe that the effective equation-of-state at the present time

weff,0 ≡ weff(z = 0) exhibits only slight deviations from the cosmological constant

with weff,0 < −0.996 (n = 1) and weff,0 < −0.997 (n = 2). At the perturbations

level, preferred values of the field amplitude at the present time are |F0−1| < 0.003
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Figure 8.3: 2D Marginalised posterior distributions of sampling parameter α along
with derived parameters: the effective equation-of-state weff,0 and the field ampli-
tude |F0− 1| at present time; using n = 1 (top panels) and n = 2 (bottom panels).

(n = 1), and |F0 − 1| < 0.002 (n = 2). Higher values of α may be seen as ap-

proaching the ΛCDM model where |F0−1| → 0 and |weff,0 +1| → 0, as illustrated

previously in Figure 8.2. Modified gravity models lead to broader constraints on

density fluctuations, σ8, where higher values are preferred, as shown in Table 8.1.

With regards to the case where n is treated as a free parameter, 0 < n < 2, we ob-

serve that constraints on α, weff,0 and |F0− 1| are slightly broader: weff,0 < −0.99

and |F0− 1| < 0.007 (see Figure 8.4). Here it is noticeable that higher values of n

lead to ΛCDM standard values, for instance, on the behaviour of σ8 shown in the

right panel of Figure 8.4. The summary of the parameter constraints is given in

Table 8.1. One-tailed constraints are quoted at 95% C.L. whilst for two tails 68%

is shown. We note that similar constraints on λ and |F0 − 1| have been found by

using a subset of the parameter-space and particular values of the wavenumber

k [204, 251].
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Figure 8.4: 2D Marginalised posterior distributions of sampling parameter α along
with the effective equation-of-state weff,0, the field amplitude at the present epoch
|F0 − 1|, and the density fluctuations σ8 in spheres of radius R = 8h−1 Mpc.

We have computed the Bayesian evidence for each model to perform a model

comparison, according to the Jeffreys guideline. When the set of models are

ranked with respect to its Bayesian value, the variously parameterised f(R) mod-

els are preferred, despite having extra parameters, when compared to the ΛCDM

model. Important attention is paid to the evidence of the f(R) with n = 2, which

is significantly preferred, Bi,Λ = +1.0 ± 0.3, and also presents the largest the

difference in the minimum chi-squared, as shown in the last rows of Table 8.1.

8.4 Conclusions

We have undertaken an analysis of modified gravity models by studying its back-

ground history as well as linear perturbations. At the background level, the dy-

namics of f(R) models is encoded in the effective equation-of-state weff , whereas

at the perturbations level, it depends on the ratio of the metric potentials µ

and the effective gravitational constant γ. Initially, we provided a description for

these three functions with a general f(R) model. Then, we use a variant of the

Starobinsky model and constrain the parameter-space using current cosmologi-

cal observations. We have found that constraints on the standard cosmological
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Table 8.1: Constraints on modified-gravity parameters. For one-tailed distribu-
tions, the upper limit 95% CL is given. For two-tailed the 68 % is shown.

ΛCDM n = 1 n = 2 0 < n < 2

α − > 0.7 > 0.4 unconstrained

n − − − > 0.53

λ − 15.8± 1.3 15.6± 1.3 15.4± 1.4

H0 68.5± 1.4 69.7± 1.4 69.6± 1.4 69.4± 1.4

Ωm,0 0.293± 0.017 0.276± 0.017 0.278± 0.016 0.281± 0.018

σ8 0.819± 0.019 0.945± 0.027 0.914± 0.032 0.915± 0.049

weff,0 − < −0.996 < −0.998 < −0.99

|F0 − 1| − < 0.003 < 0.002 < 0.007

−2 lnLmax 8238.94 8238.72 8237.73 8238.45

Bi,Λ 0.0± 0.3 +0.5± 0.3 +1.0± 0.3 +0.8± 0.3

parameters are largely unaffected by the introduction of these three effective func-

tions. That is, best-fit values for the standard parameters shift by less than 1σ.

The only notable exception is σ8, whose marginalised uncertainties increase by up

to a factor of two upon the introduction of extra parameters. This is consistent

with the observation that µ and γ principally modify the growth history of cos-

mological perturbations. Figure 8.5 shows the reconstructed weff and µ at k = 0.1,

from the posterior samples in the region (2σ) using the best-fit values. We observe

that measurements on the screen mass function present slightly deviations from

unity at the latest times (z < 2), but is still consistent with µ = γ = 1. Devi-

ation from µ = 1 increases at smaller scales (larger k), however at the smallest

scales non-linear physics plays an important role and linear perturbation theory

is no longer valid. We used a Bayesian criterion to carry out cosmological model

selection and found, in the sense of Jeffreys guideline, that the variant of the

Starobinsky f(R) model with n = 2 is significantly preferred through its Bayes

factor, and also presents the best-fit of all the models, although the differences in

log-likelihoods are small.
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Figure 8.5: Reconstruction of the effective equation-of-state weff and screen mass
function µ, using best-fit values obtained in the analysis, for a f(R) with n = 2.
The colour-code indicates the ln(Likelihood), where darker regions represent an
improved fit.
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Chapter 9
Conclusions

The best model in agreement with present data is given by, so far, the concordance

ΛCDM model. However this model might not be the final one and several exten-

sions have already been implemented. In this work, given current cosmological

observations and using the Bayesian evidence as an implementation of Occam’s

razor, we have developed a model-independent reconstruction to determine the

optimal shape of the primordial power spectrum and the dark energy equation-

of-state. We have found the preferred primordial spectrum exhibits a fall-off at

large scales and a reduced power at small scales; the turn-over in the initial scalar

spectrum is enhanced when a tensor component is included in the analysis. With

regards to the dark energy equation-of-state, we have obtained results generally

consistent with the cosmological constant scenario, however the dark energy does

seem to exhibit a temporal evolution, although very weak. In the search of a

better description of cosmological observations, we have also incorporated fea-

tures beyond the standard ΛCDM model: a second dark energy component, and

modifications to the laws of gravity at cosmological scales. These models have

a similar Bayesian evidence to ΛCDM to within the numerical uncertainty, and

hence describe current data equally well.

Determining the main properties of both the primordial spectra and the dark

energy equation-of-state is one of the biggest challenges of observational cosmol-

ogy today, as it requires precise measurements of the expansion history and the

growth-rate of structure in the universe. An impressive set of high accuracy sur-
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veys are underway, or have been planned, to constrain the dynamical properties

of the universe and hence the search of possible signatures for new cosmology. For

instance, the Planck satellite will significantly improve measurements on the E

and B polarisation modes; the Euclid satellite will explore the expansion history

of the universe and the evolution of cosmic structures over a very large fraction of

the sky; the Dark Energy Survey will probe the origin of the accelerating universe

and help uncover the nature of dark energy. The improved data, along with ad-

vanced statistical techniques, will therefore provide a more accurate description

of the universe and narrow down the list of candidates in best agreement with

experimental observations.
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Appendix A
Cubic spline interpolated

spectrum

In this appendix we illustrate how the type of interpolation in our node-based

approach can influence the reconstruction of the primordial spectrum. We use

the same example shown in Figure 4.9 but now we use a cubic spline to inter-

polate through the k-nodes. From Figure A.1 we note that the spectrum used

as an input lies well outside the error bar on the reconstruction at low k-values.

Therefore, the spline fails to recover the input spectrum correctly, contrary to the

linear interpolation where the recovered spectrum, shown in Figure 4.9, is more

representative, with the true spectrum lying comfortably within the error-bars on

the reconstruction at all k-values. This is mainly because a function with rapidly

changing higher derivatives, such as the input primordial spectrum used here,

is less accurately approximated by higher order polynomials. In particular, the

requirement of continuous first and second derivatives, combined with the tight

constraints at small and intermediate length scales, leads to a significant over-

estimation of the power at the less well constrained region at the largest scales.

Hence, in this case, the linear interpolation describes the shape of the primordial

spectrum better than the spline.

For comparison with the results presented earlier, we also use the cubic spline

to perform similar node-based reconstructions of the spectrum to those shown in
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Figure A.1: Reconstruction of the Lasenby & Doran primordial scalar spectrum
based on the binning format with cubic spline described in Section 4.1.2. We have
assumed an idealised CMB spectrum with limitation only due cosmic variance
(left). Right panel shows the reconstructed spectrum in the binning format together
with the LD input spectrum.

Figures 4.1 and 4.2. The low number of bins used to describe the global structure

of the spectrum yield to similar shapes by using both interpolation methods. The

reconstructed spectra for three and four bins, along with one and two internal

k-nodes, are plotted in Figure A.2 using the spline interpolation.
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Figure A.2: Reconstruction of the primordial scalar spectrum using the cubic
spline. Top panel resembles plots (b) and (c) shown in Figure 4.1, whereas bottom
panel the reconstruction for the models shown in Figure 4.2. To the right of each
reconstruction we plot the 1D marginalised posterior distribution of the amplitudes
Ai and k-node position ki. The top label in each panel denotes the associated Bayes
factor with respect to the base model (HZ) shown in Figure 4.1 (a).
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Appendix B
Gauge invariant quantities

The gauge invariant energy-momentum perturbations, following Doran [63], Durrer

[65], are defined by

V ≡ v − 1

k
ḢT = v(longit), (B.1)

Dg ≡ δ + 3(1 + w)

(
HL +

1

3
HT

)
, (B.2)

= δ(longit) + 3(1 + w)Φ, (B.3)

D ≡ δ(longit) + 3(1 + w)
a′

a

V

k
, (B.4)

Γ ≡ πL − c2
s

w
δ. (B.5)

where (longit) labels perturbations in the longitudinal gauge.

Einstein’s equations in gauge invariant variables become:

4πGa2ρ̄D = k2Φ, (B.6)

4πGa2(ρ̄+ p̄)V = k

(
a′

a
Ψ− Φ′

)
, (B.7)

8πGa2p̄Π = −k2(Φ + Ψ), (B.8)

and the energy-momentum conservation:
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B. GAUGE INVARIANT QUANTITIES

D′g + 3(c2
s − w)

a′

a
Dg + kV (1 + w) + 3

a′

a
wΓ = 0, (B.9)

V ′ =
a′

a
(3c2

s − 1)V + k[Ψ− 3c2
sΦ]

+
c2

sk

1 + w
Dg +

wk

1 + w

[
Γ− 2

3
Π

]
. (B.10)

The gauge invariant expression for the comoving curvature perturbation is

given by

R = HL +
1

3
HT +

a′

ak
(V −B). (B.11)

This is the perturbation to the intrinsic curvature scalar of comoving hyper-

surfaces: hypersurfaces orthogonal to the worldlines that comove with the total

matter (vi = 0) [39]. For a universe dominated by a scalar field, R in gauge

invariant form can be written as

R = HL +
1

3
HT − a′

a

δφ

φ̄′
. (B.12)
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