The Constraint is really a cone on the sky-sphere
![]() | SpatialConstraint () Constructor |
![]() | SpatialConstraint (SpatialVector, float64) Initialization constructor |
![]() | SpatialConstraint (const SpatialConstraint &) Copy constructor |
![]() | operator = (const SpatialConstraint &) Assignment |
![]() | setVector (SpatialVector &) set vector |
![]() | setDistance (float64) set distance |
![]() | invert () Invert |
![]() | contains (const SpatialVector v) check whether a vector is inside this |
![]() | v () give back vector |
![]() | d () const give back distance |
![]() | read (istream &in) read |
![]() | readRaDec (istream &in) read |
![]() | write (ostream &out) const write |
The Constraint is really a cone on the sky-sphere. It is characterized by its direction a_, the opening angle s_ and its cosine -- the distance of the plane intersecting the sphere and the sphere center. If d_ = 0, we have a half-sphere. If it is negative, we have a 'hole' i.e. the room angle is larger than 90degrees. Example: positive distance. ____ . --- --- . / /|\ . / / |=\ . | / |==| this side is in the convex. . | /\s |===| . |------------|---| -> direction a . | \ |===| . | \ |==| . \ \ |=/ . \ \|/ . ---____--- . . . <-d-> is positive (s < 90)Example: negative distance. ____ . ---====--- . this side is /========/|\ . in the /========/=| \ . convex |==== s__/==| | . |===== / /===| | . dir. a <- |------------|---| 'hole' in the sphere . |========\===| | . |========\==| | . \========\=| / . \========\|/ . ---____--- . . . <-d-> is negative (s > 90)for d=0 we have a half-sphere. Combining such, we get triangles, rectangles etc on the sphere surface (pure ZERO convexes)
SpatialConstraint(SpatialVector, float64)
SpatialConstraint(const SpatialConstraint &)
SpatialConstraint& operator =(const SpatialConstraint &)
void setVector(SpatialVector &)
void setDistance(float64)
void invert()
bool contains(const SpatialVector v)
SpatialVector& v()
float64 d() const
void read(istream &in)
alphabetic index hierarchy of classes