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Gravitational waves from primordial black holes
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Abstract: The current and the third generation of gravitational-wave (GW) detectors will investigate
one of the most tantalizing ideas triggered by the first GW detections: that the observed black holes may
have a primordial origin and explain all, or part of the Dark Matter (DM) in the Universe. With thou-
sands of detections expected in the next observing runs of LIGO/Virgo/KAGRA, and hundred thousands
for third generation instruments like Cosmic Explorer and Einstein Telescope, GWs will be the ideal probe
of primordial black hole (PBH) signatures, in order to bring solid but model-dependent answers to these
fundamental questions. GW probes include the mass, spin, rate and redshift distributions of black hole
mergers, stochastic backgrounds from PBH formation and PBH binaries, GW bursts from close encounters,
continuous waves from planetary-mass PBH binaries in our galaxy. The discovery of even a single PBH
would revolutionize our understanding of the Universe, shedding light on new Physics at the origin of their
formation. PBHs could also solve cosmological and astrophysical puzzles, including the nature of DM and
the seeds of supermassive black holes at the center of galaxies.



Motivations. The first gravitational wave (GW) observations [1-10] have revealed some intriguing prop-
erties of black hole (BH) mergers, linked to their low spins and their large or asymmetric masses. They
are challenging astrophysical models of BH formation [10] and may favor new stellar evolution scenar-
ios [11, 12]. Alternatively, these properties could be explained by a primordial origin, and GW observations
have rekindled the suggestions that primordial black holes (PBHs) may exist and constitute from a fraction
to all of the dark matter (DM) in the Universe [13—17]. If some of these BHs are primordial, this would have
tremendous consequences for Cosmology, High Energy Physics, DM and the physics of the early Universe.

PBHs may have formed in the early Universe due to the gravitational collapse of large inhomogeneities
[18-22] produced during inflation [23,24] or phase transitions [25], from scalar field fragmentation [26-28],
vacuum bubbles [29,30] or the collapse of topological defects like cosmic strings [31,32]. Their abundance
in the Universe could range from a negligible fraction to the totality of DM. The various astrophysical limits
(see [33,34] for reviews and [35,36] for recent developments) and their uncertainties, depicted on Figure 1,
still allow certain mass windows, including the stellar-mass range of interest to ground-based GW detectors.
In some models, PBHs form in this range. On top of the effect of the distribution of primordial density fluc-
tuations, the thermal history of the Universe, in particular the quantum chromodynamics (QCD) transition,
introduces universal features in the PBH mass function [37—40] and spin distribution of PBHs and their
merger remnants [25], which could be used to distinguish the origin of BHs [40]. In [41], various detec-
tion strategies based on electromagnetic (EM) probes have been considered in the context of the Astro2020
decadal survey. We focus here on PBH searches using GW observations [42] by ground-based instruments
(for PBH perspectives with LISA, see [43—45]) which will be complementary to EM searches.

Searches in GW observations. Advanced LIGO and Virgo, and future ground-based GW observatories,
e.g. Cosmic Explorer (CE) [46, 47] and Einstein Telescope (ET) [48-50], will probe the origin of BHs
(stellar or primordial) through different methods and observations:

1. Subsolar black holes. Detecting a black hole of mass below the Chandrasekhar mass would almost
unambiguously point towards a primordial origin. Subsolar searches have been carried out in the first and
second observing runs of LIGO/Virgo [51, 52], assuming component masses between 0.1 and 2M . They
will be continued and extended to BH binaries with a larger primary component mass, which are motivated
by a boosted PBH formation at the QCD transition, corresponding to masses between 0.5 and 5M, [37-40].
CE and ET will reach the sensitivity to detect binaries with a sub-solar black hole at cosmological distances,
as seen in Figure 1. They will allow to set unprecedent limits on the abundance of subsolar BHs. Finally, the
absence of a GW signal from a kilonova may point to neutron stars (NS) destroyed by sublunar PBHs [53].

2. BHs in the NS mass range and low mass gap. The third observing run of LIGO/Virgo has revealed the
existence of compact objects in the mass-gap between the highest mass of known NS and the lowest mass
of astrophysical BHs [9, 10]. BHs in the mass gap could also form when NS merge [54], contaminating a
plausible PBH population. Multi-messenger astronomy could probe the origin of these objects, eventually
revealing their primordial origin by searching for an EM counterpart. CE and ET could also detect their
final merging phase and thereby distinguish the nature of these objects. The existence of BHs in this range
is motivated in PBH models, due to a boosted formation at the QCD transition [39,40].

3. Intermediate-mass BHs. Above 60M,, pair-instability should prevent BHs to form from single stellar
explosions. PBHs are not sensitive to this limit and may lead to BH mergers in this range. Accurate spin
reconstructions will allow to distinguish them from secondary mergers in dense environments [55]. CE will
probe the existence of intermediate-mass black hole binaries up to 10* M, which will reveal a possible
primordial origin of the seeds of the super-massive BHs at the center of galaxies [40, 56].

4. BH mergers at high redshift. The third generation of GW detectors like CE and ET will have an astro-
physical reach 20 < z + 1 < 100, prior the formation of stars, as shown in Figure 1. Any BH merger
detection would therefore almost certainly point to a primordial origin.
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Figure 1: Left: Astrophysical range in redshift as a function of the total binary mass for Advanced Ligo (aLIGO), ET

and CE (figure from [50]). Right: Astrophysical limits on the PBH density with respect to DM, for a monochromatic

PBH mass function. The arrows point to the mass windows where PBHs can constitute a substantial part of DM.

Figure from [35, 36], where details and references on these limits and their uncertainties can be found.

5. Distinguishing PBH vs stellar BHs with statistical methods. Besides the above-mentioned exceptional
BH merger events, Bayesian statistical methods and model selection [57] applied to the rate, mass, spin and
redshift distributions will help to distinguish PBHs from the stellar scenarios [40,45,58—72]. They can be
used to set new limits on PBH models and reveal the existence of different black hole populations. PBH
binaries with merging rates large enough to be detected may have formed by tidal capture in clusters [13,
14,73,74] and before recombination [59, 75-78] (see however [79] for an opposite claim). Deep learning
based techniques will be used to search for low mass or highly-asymmetric PBH binary candidates.

6. Stochastic backgrounds. If PBHs contribute to a non-negligible fraction of DM, their binaries generate a
detectable stochastic GW background (SGWB) [80-83]. Its spectral shape depends on the PBH mass distri-
bution and binary formation channel and its amplitude can be comparable or higher than other astrophysical
sources. The number of sources contributing to the signal may also help to distinguish the SGWB from
neutron stars, stellar BH and PBHs. Other SGWBs may come from Hawking radiation [84] or the density
fluctuations at the origin of PBH formation [43,44,85-93]. At second order in the theory of cosmologi-
cal perturbations, they source a SGWB. Present and future ground-based detectors will probe PBH masses
between 10720 and 1017 M, [90,91] and will provide complementary limits on their abundance.

7. Continuous waves (CWs) from planetary-mass binaries. If PBHs have a wide mass distribution down
to 1078 M, or with a peak on planetary-masses, they would form binaries emitting CWs waves in the
frequency range of detectors, years before they merge. The methods originally designed to detect CWs from
asymmetrically rotating neutron stars [94] can be adapted to search for subsolar PBHs in our galaxy. The
Frequency-Hough method exploits the continuous, quasi-monochromatic nature of inspiraling BHs that are
sufficiently far apart such that their orbital frequency can be approximated as linear with a small spin-up. The
Generalized Frequency-Hough method drops the assumption of linearity and allows the inspiral signal to
have a power-law evolution. Both can detect or set new limits on PBHs in the mass range [10~% — 1073 M.
CE and ET could even detect such binaries in the solar system vicinity.

8. GW bursts from close encounters. Another signal from PBHs comes from the GW bursts from hyperbolic
encounters in dense halos [95,96]. The signal frequency can lie in the frequency range of ground-based
detectors for stellar-mass BHs, with a duration of order of milliseconds.

Summary. GW offer multiple ways to probe and constrain the existence of PBHs, as well as their for-
mation scenarios. PBHs may be linked to the nature of DM, to the baryogenesis [97, 98], be the seeds of
supermassive BHs [56] and galaxies [99], and would provide new ways to test the existence of particles like
WIMPs [100]. Observing them would therefore have groundbreaking implications in fundamental physics.
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