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Abstract: Following the pioneering observations with COBE in the early 1990s, studies of the cosmic
microwave background (CMB) temperature and polarization anisotropies have greatly advanced our under-
standing of the Universe. However, CMB spectral distortions – tiny departures of the CMB energy spectrum
from that of a perfect blackbody – provide a second, independent probe of fundamental physics, with a reach
deep into the primordial Universe. Spectral distortions probe the thermal history of the Universe providing
insight into processes within the cosmological standard modeli (CSM) as well as new physics beyond. As
highlighted in this LOI, spectral distortions are an important tool for understanding inflation and the nature
of dark matter. The range of signals is vast: many orders of magnitude of discovery space can be explored
by detailed observations of the CMB energy spectrum. In addition, several CSM signals are predicted and
provide clear experimental targets that are observable with present-day technology. A detection of these sig-
nals would anchor our understanding of the CSM over orders of magnitude in physical scales. Their absence
would pose a huge theoretical challenge, immediately pointing to new physics. With dedicated experimental
approaches, we have the unique opportunity to open this new observational window in the decades to come.

iWhen referring to the CSM we assume the ΛCDM parametrization, supplemented by the Standard Model (SM) of particle
physics, admitting that the presence of dark matter and dark energy requires physics beyond the latter.
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Formation of CMB spectral distortions: Spectral distortions are created by processes that drive matter
and radiation out of equilibrium after thermalization becomes inefficient at redshift z . 2× 106. Examples
are energy-releasing mechanisms that heat the baryonic matter, inject photons or other electromagnetically-
interacting particles. The associated signals are usually characterized as µ- and y-type distortions, formed by
energy exchange between electrons and photons through Compton scattering1–6. While y-type distortions
can be formed at late times (z . 5× 104), a µ-distortion is a clear witness of processes occurring deep into
the pre-recombination era (5× 104 . z . 2× 106). This classical picture has been refined in recent years,
and we now understand that the transition between µ- and y-type distortion is gradual and that the signal
contains valuable time-dependent information in residual r-type distortion7–9. Additional information can
be imprinted by non-equilibrium processes in the pre-recombination plasma10–12, free-free emission13–17 or
by non-thermal particles in high-energy particle cascades12;18–22. Spectral distortions thus provide more than
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Figure 1: Science thresholds and mission concepts of increasing sensi-
tivity. Guaranteed sources of distortions and their expected signal levels
are shown in yellow, while non-standard processes with possible signal
levels are presented in turquoise. Spectral distortions could open a new
window to the pre-recombination Universe with a vast discovery space
to new physics that is accessible on the path towards a detection and
characterization of the µ-distortion from the dissipation of small-scale
acoustic modes set by inflation and the cosmological recombination ra-
diation. The figure is adapted from this reference 23.

just a simple integral constraint for cosmol-
ogy. They are a unique and powerful probe
of a wide range of interactions between par-
ticles and CMB photons, reaching from the
present all the way back to a few months after
the Big Bang and allowing us to access infor-
mation that cannot be extracted in any other
way. Broad overviews of the CMB spectral
distortion science case can be found in7;23–31.

Dark Matter: The search for dark matter
(DM) is one important example of how spec-
tral distortions probe fundamental physics.
Non-baryonic matter constitutes' 25% of the
energy density of the Universe, but its nature
remains unknown. The long-favored WIMP-
scenario is under increasing pressure32–37, and
emphasis is gradually shifting focus towards
alternatives, prominent examples being ax-
ions, sterile neutrinos, sub-GeV DM or pri-
mordial black holes38–44. Measurements of
the CMB anisotropies themselves have clearly
helped to establish the presence of DM on cos-

mological scales45;46;46 and also provided tight constraints on DM annihilation and decay47–55 as well as
DM-SM-interactions56–60. CMB spectral distortions offer a valuable complementary probe to search for
DM7;12;61–67 and its interactions68–70. For decaying particle scenarios, distortions are sensitive to par-
ticles with lifetimes tX ' 106 − 1012 s, providing direct measurement of particle lifetimes via r-type
distortions65;71. Similarly, annihilating particles can be constrained using distortions: the µ-distortion is
sensitive to light particles (m . 100 keV) and complements γ-ray searches for heavier particles, being
sensitive to s- and p-wave annihilation71–73. The rich spectral information added by various non-thermal
processes10–12;19–21;74 will allow us to glean even more information about the nature of DM, placing limits
on the importance of different decay or annihilation channels.

Axion-like particles and dark photons: Axions or Axion-Like Particles (ALPs) are predicted in multi-
ple particle physics scenarios75–80, and their discovery would mark a paradigm shift in the framework of the
standard models of cosmology and particle physics. Several particle physics experiments81 such as CAST82,
ALPS-II83, MADMAX84, ADMX85, CASPER86 are looking for the signatures of axions or ALPs over a
wide range of masses. Spectral distortion bring a complementary cosmological avenue to probe ALPs (even
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if they are only a fraction of the DM) by studying their coupling with photons in the presence of an external
magnetic field and other plasma effects87–95. CMB distortions are a probe for detecting ALPs and dark
photons. The signatures of non-gravitational interactions of ALPs with photons distort their energy spec-
trum and thus can be detected robustly if the energy spectrum of the source is well-known. The radiation
field of CMB provides us with an excellent source which can be used to detect the distortions due to ALPs.
The ALPs distortion93–95 (α-distortion) is imprinted on the CMB while it is passing through the external
magnetic field of the intergalactic medium, inter-cluster medium, voids and Milky Way. In this way, we can
explore a new parameter space of the coupling strength and ALP masses, which are currently beyond the
reach of particle-physics experiments. The discovery space is enormous and provides a direct cosmological
window into the string axiverse79.

Probe of inflation: A central question in modern cosmology is the origin of the observed primordial
density perturbations. Spectral distortions provide a unique new probe of primordial density perturbations.
Inflation may or may not actually describe the early Universe, but the existence of primordial density per-
turbations is uncontested; regardless of their origin, the dissipation of these perturbations through photon
diffusion (↔ Silk damping) in the early Universe will distort the CMB spectrum at observable levels96–100.
The signal (µ+y+r-distortion) can be accurately calculated using simple linear physics and depends on the
amplitude of primordial perturbations at scales with wavenumbers k ' 1−104 Mpc−1, some ten e-folds fur-
ther than what can be probed by CMB anisotropies. Measurements of µ-distortions are directly sensitive to
the power spectrum amplitude and its scale dependence around k ' 103 Mpc−1 65;101–104. Within the slow-
roll paradigm, this provides a handle on higher-order slow-roll parameters (often accounted for as running
of the tilt or running of the running), benefiting from a vastly extended lever arm65;105–108. Outside of stan-
dard slow-roll inflation, large departures from scale-invariance are well-motivated and often produce excess
small-scale power (e.g., features109–112, inflection points113–118, particle production119–123, waterfall transi-
tions124–128, axion inflation129–132, heavy fields133;134, etc.135), implying the presence of new physical scales
that can be probed with spectral distortions. Spectral distortions furthermore depend on the perturbation-
type (i.e., adiabatic vs. iso-curvature)136–139, and are also created by tensor perturbations140;141, primordial
non-Gaussianity142–148, as well as cosmic bubbles and textures149–151, thus providing additional ways to
test inflation scenarios in uncharted territory. Low-energy cosmological recombination lines24;152–157 could
provide additional constraining power to inflationary models158 as well as allow exploring explicit temporal
variations of fundamental constants157;159.

Primordial black holes: CMB spectral distortions can also place stringent limits on the abundance of
primordial black holes (PBHs) e.g.,43;160–163. There is good motivation to study these scenarios, because
PBHs with masses of mPBH ' O(10)M� may indeed explain the gravitational wave signals164–167 emitted
in the merger events of (primordial) binary black holes reported by LIGO / Virgo168. PBHs with masses
in the range mPBH ' 10−17M� − 10−11M�

43;169 can furthermore still constitute ' 100% of cold DM
(see also126;161;170). Lastly, PBHs with masses mPBH ' 3 × 103M� − 105M� may form the seeds for
super-massive black holes (SMBHs) that grow to their current sizes merely by continuous (sub-)Eddington
accretion, solving a long-standing problem in cosmology171–174. CMB spectral distortions are also sensitive
to PBHs with masses mPBH ' O(10)M�

161;175.
Summary: The seminal measurements of the CMB blackbody spectrum by COBE/FIRAS in the early

1990s cemented the Hot Big Bang model by ruling out any energy release greater than ∆ργ/ργ ' 6× 10−5

of the energy in CMB photons176–178. Technological advances since then allow us to drill deeper into the
signal by four orders of magnitude or more (e.g., with experimental concepts like PIXIE179;180, PRISM26,
COSMO, CMB-Bharat181, PRISTINE182, BISOU, Super-PIXIE183 or Voyage 205023;184), opening an enor-
mous discovery space for both predicted distortion signals and those caused by new physics. Along with the
vast discovery space in fundamental physics, spectral distortions are also going to probe many astrophysical
phenomena at late times1;185–190, hence embracing a wide range of processes waiting to be explored.
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[31] Matteo Lucca, Nils Schöneberg, Deanna C. Hooper, Julien Lesgourgues, and Jens Chluba. The synergy between

CMB spectral distortions and anisotropies. JCAP, 02:026, 2020.
[32] Z. Ahmed et al. Dark Matter Search Results from the CDMS II Experiment. Science, 327:1619–1621, 2010.
[33] E. Aprile et al. Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett, 109:181301,

2012.
[34] G. Angloher et al. Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys.

J., C76(1):25, 2016.
[35] R. Agnese et al. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the

CDMS Low Ionization Threshold Experiment. Phys. Rev. Lett, 116(7):071301, 2016.
[36] Andi Tan et al. Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Phys. Rev.

Lett, 117(12):121303, 2016.
[37] D. S. Akerib et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett,

118(2):021303, 2017.
[38] G. Jungman, M. Kamionkowski, and K. Griest. Supersymmetric dark matter. Phys. Rep., 267:195–373, March

1996.
[39] J. L. Feng, A. Rajaraman, and F. Takayama. Superweakly Interacting Massive Particles. Phys. Rev. Lett,

91(1):011302, July 2003.
[40] J. L. Feng, A. Rajaraman, and F. Takayama. Superweakly interacting massive particle dark matter signals from

the early Universe. Phys. Rev., D68(6):063504, September 2003.
[41] A. Kusenko. Sterile neutrinos: The dark side of the light fermions. Phys. Rep., 481:1–28, September 2009.
[42] J. L. Feng. Dark Matter Candidates from Particle Physics and Methods of Detection. ARA&A, 48:495–545,

September 2010.
[43] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama. New cosmological constraints on primordial black holes.

Phys. Rev., D81(10):104019–+, May 2010.
[44] D. J. E. Marsh. Axion cosmology. Phys. Rep., 643:1–79, July 2016.
[45] C. L. Bennett et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary

Maps and Basic Results. ApJS, 148:1–27, September 2003.
[46] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J.

Banday, R. B. Barreiro, J. G. Bartlett, et al. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13,
September 2016.

[47] J. Ellis, G. B. Gelmini, J. L. Lopez, D. V. Nanopoulos, and S. Sarkar. Astrophysical constraints on massive
unstable neutral relic particles. Nu. Phys. B, 373:399–437, April 1992.

[48] Jennifer A. Adams, Subir Sarkar, and D. W. Sciama. CMB anisotropy in the decaying neutrino cosmology.
MNRAS, 301:210–214, 1998.

[49] X. Chen and M. Kamionkowski. Particle decays during the cosmic dark ages. Phys. Rev., D70(4):043502–+,
August 2004.

[50] N. Padmanabhan and D. P. Finkbeiner. Detecting dark matter annihilation with CMB polarization: Signatures
and experimental prospects. Phys. Rev., D72(2):023508–+, July 2005.

6



[51] S. Galli, F. Iocco, G. Bertone, and A. Melchiorri. CMB constraints on dark matter models with large annihilation
cross section. Phys. Rev. D, 80(2):023505–+, July 2009.
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19Physics department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
20Physics Department, Ariel University, Ariel 40700, Israel
21Fermi National Accelerator Laboratory, MS209, P.O. Box 500, Batavia, IL 60510
22Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, USA 60637
23Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, USA 60637
24Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON, M5S 3H8, Canada

12

http://cmb-bharat.in/


25Institut d’Astrophysique de Paris, UMR7095, CNRS & Sorbonne Universite, 98 bis Boulevard Arago, F-75014, Paris, France
26Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris 75005,
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85LUPM, CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
86Institute for High Energy Physics by the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Vienna, Austria.
87School of Physics, University of Melbourne, Parkville VIC 3010, Australia
88University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
89Physics & Astronomy Dept., UCL, London WC1E 6BT, UK
90Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, 55 Canada
91Physics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794
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