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Abstract:
Seeking the fundamental nature of matter and associated mysteries bridges the energy, neutrino, and cosmic
frontiers, thus connecting astro-particle physics and accelerator-based particle physics. Ergo, the study
of astro-particle physics can have significant implications in the search for physics beyond the Standard
Model at the LHC and future colliders. Correspondingly, LHC experiments provide the laboratory for
measurements relevant to understand the subtleties of astro-particle physics. This Letter of Interest for
SNOWMASS21 highlights some of the synergistic links between astro-particle physics and collider physics,
focusing on cosmic rays and neutrinos. Related discussions by the European Community can be found in the
European Particle Physics Strategy (EPPS)1 and the Astroparticle Physics European Consortium (APPEC)
roadmap.∗

∗https://europeanstrategyupdate.web.cern.ch/; https://www.appec.org/roadmap
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The history of cosmic-ray/neutrino studies has witnessed many discoveries central to the progress of
high-energy physics, from the watershed identification of new elementary particles in the early days, to
the confirmation of long-suspected neutrino oscillations, to measuring cross-sections and accessing particle
interactions far above accelerator energies. Two major recent achievements in this direction are: (i) the
measurement of the proton-proton cross section at center-of-mass energy

√
s ∼ 75 TeV2–4, which provides

evidence that the proton behaves as a black disk at asymptotically high energies5;6; (ii) the measurements of
both the charged current neutrino-nucleon cross section7;8 and the neutral to charged current cross section
ratio9 at

√
s ∼ 1 TeV, which provide restrictive constraints on fundamental physics at sub-fermi distances.

The Pierre Auger Observatory has also demonstrated that it is possible to test particle physics models at√
s & 100 TeV using hybrid measurements of extensive air showers, even with a mixed primary composi-

tion10;11. A significant discrepancy in the shower muon content is found (> 2σ, statistical and systematic
errors combined in quadrature) between predictions of LHC-tuned hadronic event generators12 and obser-
vations. This discrepancy has been confirmed by the Telescope Array13. Moreover, thorough studies by the
Working Group on Hadronic Interactions and Shower Physics (WHISP) show that while air shower mea-
surements are consistent within their uncertainties with predictions up to cosmic ray energiesE ∼ 108 GeV,
at higher energies a muon excess is observed that systematically increases with rising shower energy14;15.
The slope of a fit to this excess is found to be significant at about 8σ when considering the hadronic event
generators EPOS-LHC16 and QGSJet-II.0417. The onset of the discrepancy corresponds to a center-of-mass
energy per nucleon

√
sNN . 14 TeV that has been in principle probed by LHC experiments. It is thereby

challenging to imagine beyond the Standard Model (SM) physics being the main reason for this discrepancy.
Recent Auger measurements on muon fluctuations in air showers initiated by ultrahigh-energy cosmic rays
(UHECRs) have further increased the challenge18. Analytical and numerical studies indicate that the energy
evolution of the muon number and its fluctuations are directly related to the ratio of the energy deposited in
neutral pions to that of other hadrons: Eπ0/Eh

19–22. This ratio is mostly driven by the hadronization pro-
cess. At present, all hadronic interaction models used in UHECR physics are based on the same string-like
(Lund model) hadronization23. Tests using Sibyll2.3c and EPOS-QGP24 show that the discrepancy in the
number of muons can be reduced by decreasing Eπ0/Eh. A separate Letter of Interest (LoI) discusses in
detail the cosmic ray data25.

The ALICE Collaboration has reported an enhancement of the yield ratio of strange and multi-strange
hadrons to charged pions as a function of multiplicity at mid-rapidity in pp, pPb, PbPb, and XeXe scatter-
ing26;27. This observation provides evidence that a quark-gluon plasma (QGP) could be partly formed in
high multiplicity events of both small and large colliding systems. The almost equal column-energy den-
sity in UHECR-air collisions and PbPb collisions at the LHC28 allows for a direct test of next-generation
QGP event generators: LHC PbPb scattering at

√
sNN = 5.02 TeV and UHECR N-air collisions at√

sNN ' 12 TeV (corresponding to E ' 109 GeV) should produce the same hadron-to-pion yield ra-
tios as a function of the charged multiplicity29. The formation of QGP blobs could play a significant role
in the development of extensive showers. In particular, the enhanced production of multi-strange hadrons
in high-multiplicity small and large colliding systems would suppress the ratio Eπ0/Eh

30–34. ALICE data
also indicate a smooth transition from a string-like hadronization to a QGP-like statistical hadronization as
a function of central multiplicity. This transition could address the muon puzzle but with the strong assump-
tions that the transition should start already at relatively low energy and should be effective at large Feynman
xF

35. From the theoretical perspective, this provides a new pathway connecting LHC soft hadronic physics
with extensive air showers to be fully explored in the next decade.

While the ALICE data suggest a rather universal picture of particle production at mid-rapidity, data from
LHCb show significant nuclear modification of production cross sections of forward produced charmed
mesons36;37 which break universality. The LHCf experiment38 finds even stronger nuclear modification
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for π0 production in the extreme forward region39. LHCb is ideally suited to study the transition between
universal and non-universal hadron production in pp and pPb collisions and to precisely measure spectra
of π’s, K’s, and p’s with LHCb’s unique particle identification capabilities in the forward region, with the
goal to reduce the current model spread five-fold. The LHCf experiment is made of two double arm high
precision calorimeters placed on both side of ATLAS interaction point40 and covers the very forward region
with precision measurements of neutral particles. These measurements41;42 are of utmost importance for the
calibration of hadronic interaction models used in the Monte Carlo codes developed for UHECR physics. A
proposal to accelerate oxygen beams in LHC was strongly supported by LHCb and LHCf to study the nuclear
modification in the pO system43, which directly mimics UHECR-air collisions. A week of LHC running
with oxygen beams is planned for 2023. Solving the muon discrepancy also comes with LHC fixed-target
(FT) data. Let us cite the LHCb SMOG-2 upgrade44, extending the45 unique capability of LHCb to run in
the FT mode with H and O targets. ALICE could also take LHC FT data in a wider rapidity range45. These
mimic the last stages of air shower development, where measuring the transverse momentum distribution
is very important for the shape of the lateral muon density profile. In addition, charged hadron spectra
in the very forward region at the LHC could be measured with a forward multiparticle spectrometer (FMS)
described in a separate LoI46. This would require an enlarged beam pipe between the superconducting dipole
D1 and the TAXN absorber in Run 4 and beyond. The spectra of π±,K±, p and p̄ and light antinuclei with
xF = 0.1 − 0.3 as well as charmed hadrons (D0, D̄0,Λ+

c ) at higher xF in low pile-up pp, pO, and OO
collisions would greatly improve our understanding of very high energy cosmic ray showers47.

Complementary information to address the muon puzzle will come from novel gamma-ray, neutrino and
UHECR experiments such as LHAASO-KM2A48, SWGO49 (TeV), IceCube/IceTop50, Tibet AS-gamma51,
ALPACA52 (PeV), AMIGA/MARTA53;54 (0.1EeV), and AugerPrime55 which will measure the muon dis-
tributions of air showers in a broad range of energy overlapping with collider data. This new arsenal of data
will provide a profitable arena for testing next-generation models of high-energy hadronic collisions.

A key player for establishing the connection between cosmic messengers and collider physics is the For-
wArd Search ExpeRiment (FASER), which is located in the very forward direction at the LHC56. FASER
will measure forward going muons which can be proxies of forward-produced pions, providing complemen-
tary information to address the muon puzzle. FASER has also a dedicated neutrino detector FASERν 57;58

for measuring forward neutrinos that could give critical information on perturbative charm59 and associ-
ated charm production (the charm analogue to K + Λ for strangeness) at Feynman xF close to 1. These
processes almost certainly yield the dominant atmospheric background for IceCube cosmic neutrinos above
100 TeV60–62, and at the moment we have no data and we have no theory for the process. A separate LoI
discusses in detail the potential of FASERν 63. The Search for Hidden Particles (SHiP) could provide similar
information on the charm contribution to atmospheric neutrinos64. Finally, FASER will search for light and
weakly interacting particles that could mimic neutrino interactions in cosmic-ray/neutrino facilities65.

Neutrinos are veracious astronomical messengers as they propagate without interactions between source
and Earth, providing compelling probes of fundamental physics66–69. The neutrino’s direction and energy
(modulo the usual red-shifting due to expansion of the universe) are preserved, and the neutrino’s flavor
is altered in a calculable way. IceCube-Gen2 measurements70 will complement collider data in the search
for physics beyond the SM. For example, IceCube-Gen2 observations will allow for searches sensitive to
putative supersymmetry production, reaching mass scales far beyond those probed at colliders71;72. Mea-
surements of the cosmic neutrino flux73–75 are consistent with an s-channel enhancement of neutrino-quark
scattering by a leptoquark that couples to the τ -flavor and light quarks76. With the large statistics sample to
be collected by IceCube-Gen2, we will be able to study the inelasticity distribution of events that provides a
unique method for SM background rejection, allowing powerful discrimination of resonant processes77;78.
The importance of cosmic neutrinos to probe fundamental physics is discussed in a separate LoI79.
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