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Abstract: We propose the 1000-kg phase of the Large Enriched Germanium Experiment for Neutrinoless21

double beta Decay (LEGEND-1000). Though the main focus of LEGEND-1000 is the search of neutrinoless22

double beta decay of 76Ge, it will also have a rich program searching for other rare events from beyond23

standard model (BSM) physics processes that are relevant to the Cosmic and Rare Processes and Precision24

Frontiers. These searches are enabled by its keV-level thresholds, large mass, low backgrounds, and detector25

technology. We provide an overview of these opportunities in this LOI.26
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Baseline detector design for LEGEND-1000.27

We propose the 1000-kg phase of the Large Enriched Germanium Experiment for Neutrinoless dou-28

ble beta Decay (LEGEND-1000), based on the successful MAJORANA and GERDA experiments. We29

have prepared technical designs that are compatible with the leading candidate underground laboratories.30

The LEGEND-1000 baseline technical design is centered around the demonstrated low-background, low-31

thresholds, low-noise, and excellent energy performance of p-type, point-contact (P-PC) high-purity Ge32

(HPGe) semiconductor detectors, enriched to over 88% in 76Ge. Specifically, the inverted-coaxial, point33

contact (ICPC) design is the standard for LEGEND-1000. Approximately 400 individual ICPCs with an34

average mass of 2.6 kg are instrumented for a total detector active mass of 1000 kg. The detectors are35

mounted using underground electroformed Cu rods that provide mechanical support. Below each detector36

is a silicon base plate supporting a wire-bonded signal cable and front-end ASIC board that collects charges37

from the detector’s p+ electrode. From there, flat flex cables carry the signal to a data acquisition system38

for waveform digitization and offline storage. A separate single conductor flat flex cable wire-bonded to the39

detector’s n+ electrode provides a high-voltage bias.40

Pulse-shape analysis of detector signals allows discrimination of backgrounds from the BSM signal of41

interest. The highly granular nature of the Ge detector array allows discrimination of background interac-42

tions that span multiple detectors. Finally, background interactions external to the Ge detectors are detected43

by an active liquid Ar (LAr) shield.44

The HPGe detectors are split among four 250-kg modules to allow commissioning of the array in stages45

and independent operation. In each module, the detector strings are immersed within the LAr active shield,46

sourced from radiopure underground Ar. Each of the four underground LAr modules are surrounded by47

natural LAr, with additional light collection inside a cryostat, itself inside a water tank providing additional48

shielding.49

As a baseline, we use the SNOLAB cryopit overburden depth and cavity size for cosmogenic back-50

ground estimates, the cryostat conceptual design, and infrastructure needs. The impact on the design and51

background contribution has been considered for shallower depths1.52

We anticipate construction of LEGEND-1000 to take about 6 years. However, it will begin operation53

with the first 250-kg payload approximately at year 4, with additional payloads becoming operational over54

the final 2 years.55

LEGEND-1000 BSM Program56

Though the main focus of LEGEND-1000 is the search of neutrinoless double beta decay of 76Ge, it57

will also have a rich program searching for other rare events from beyond standard model (BSM) physics58

processes. These searches are enabled by its keV-level thresholds, large mass, low backgrounds, and detector59

technology. A unique benefit is the demonstrated excellent energy resolution of P-PC detectors at low60

energies (0.4 keV FWHM at 10.4 keV2), which makes LEGEND-1000 especially sensitive to BSM physics61

with sharp features or peaks in the spectrum, such as solar axions, exotic atomic transitions, and bosonic62

DM. We expect the ICPC detectors in LEGEND-1000 to have similar resolution.63

Axions and Axion-like Particles (ALPS): Bosonic pseudoscalar (i.e. ALPs) and vector dark matter, with64

mass scale of 1−100 keV, offer explanations for the observed subgalactic structure in the Universe, assuming65

a large number density compensates for their light mass3–5. With suitable electronic coupling strength, they66

may be detectable via a pseudoscalar or vector-electric effect that is analogous to photoelectric absorption.67

In this case the particle is absorbed, and its rest-mass energy is passed to atomic electrons in the detector,68

ultimately producing a peak in the detector energy spectrum at the rest mass of the particle. In 2017 the69

MAJORANA Collaboration presented several limits on BSM processes, including ALPS, using data acquired70
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during its 2015 commissioning run2. The Collaboration presented more recent results using production data71

at the TAUP 2019 conference6. Very recently, the GERDA Collaboration released limits on vector and72

pseudo-scalar dark matter in the mass region from 60 keV/c2 to 1 MeV/c2 7. Some of these limits have been73

surpassed subsequently by the XENON experiment8.74

Another potential axion/ALP source is the solar interior with production mechanisms that include Pri-75

makoff interactions of plasma photons, electron interactions, or nuclear transitions. These particles can be76

detected on earth in germanium detectors when they interact with atomic electrons or a virtual photon from77

an atomic Coulomb field9. Ge detectors are also sensitive to coherent Bragg-like ALP to photon conversion78

in the Ge-crystal lattice10, as was demonstrated by the CDMS Collaboration11. LEGEND-1000 will be able79

to significantly improve on these searches by solid-state detectors. LEGEND-1000 could also study the solar80

axion interpretation of the recently reported excess in the XENON low-energy electron recoil spectrum8.81

Lightly ionizing particles (LIPs): LIPs are hypothetical particles with suppressed electromagnetic inter-82

actions when compared to charged hadrons and leptons. Unbound quarks, noninteger-charged bound states83

of quarks, millicharged particles, or new leptons with a fractional charge are examples that occur in exten-84

sions of the SM12;13. MAJORANA was able to set a world-leading limit searching for these in cosmic-rays14,85

and LEGEND-1000 will further extend our sensitivity.86

Baryon number violating nuclear decays: Many BSM theories predict baryon number (B) violating87

process. For example, the Standard Model with small neutrino masses has an anomaly-free Z6 symmetry88

that acts as discrete B 15. In this model ∆B = 1 or ∆B = 2 processes are forbidden, but ∆B = 389

transitions can arise from a dimension 15 operator. The MAJORANA Collaboration published the first limits90

for trinucleon decay (∆B = 3) modes and invisible decay modes for Ge isotopes16. LEGEND-1000 will91

be able to greatly extend these results and look for similar decays in Ar.92

Other BSM searches: Other BSM searches include sterile neutrinos, majorons, charge-violating electron93

decay, Lorentz-violation, and Pauli Exclusion Principle violation. The LAr itself can be used for searches94

for BSM physics. GERDA performed a search for neutrinoless double-electron (ECEC) capture in 36Ar17
95

and similar searches will be possible in LEGEND-1000. Both the Ge and Ar can also serve as targets for96

supernova neutrinos. HPGe detectors are also sensitive to WIMP-nucleus recoils, though LEGEND-100097

will probably not be competitive with the noble gas experiments. The list in this section is clearly not98

exhaustive, and it is likely additional opportunities will arise.99

Experimental Considerations.100

A major challenge to searches for BSM physics with low-energy deposits (below 100 keV) in LEGEND-101

1000 is 39Ar decay in the LAr. 39Ar undergoes beta decay with a Q-value of 565 keV and a half-life of102

268 years. This yields a background spectrum that increases monotonically with decreasing energy below103

565 keV, as was shown in GERDA18. The use of underground argon depleted in 39Ar is one strategy to104

mitigate this background. A factor of 1400 reduction of 39Ar has already been demonstrated by the Dark-105

side experiment19. Other mitigation strategies include pulse-shape discrimination and increased LAr veto106

efficiency.107

Other sources of background are cosmogenic tritium and 68Ge, 42Ar, energy degraded surface events,108

and small angle Compton scatters from gamma-ray sources. Cosmogenic backgrounds are mitigated by109

storing Ge underground and transportation and fabrication protocols to minimize surface exposure20. To110

achieve its physics potential, LEGEND-1000 is developing a detailed model of the low-energy background111

to help guide design decision, for example to refine the level of 39Ar depletion required and levels of surface112

exposure that can be tolerated for the Ge.113
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